OPEN ACCESS
We propose a generalization of the Maxwell tensor that allows the integration surface to pass through magnetized matter, even when the B–H law is non-linear and anisotropic. The tensor thus modified is symmetric.
Maxwell’s tensor, magnetic forces.
À Alfredo Bermúdez pour sa suggestion d’essayer de symétriser le tenseur classique.
Bermúdez A., Rodríguez A.L., Villa I. (2015). Extended Formulas to Compute Global and Contact Electromagnetic Force and Torque from Maxwell Stress Tensors: The Role of Symmetry. IEEE Trans. Magn. (submitted).
Bossavit A. (2011). Virtual Power Principle and Maxwell’s tensor: Which comes first? COMPEL, vol. 30, n° 6, p. 1804-1814.
Bossavit A. (2014). On forces in magnetized matter. IEEE Trans. Magn., vol. 50, n° 2, p. 229-232.
Choi H.-S., Park I.-H., Lee S.-H. (2006). Concept of Virtual Air Gap and Its Applications for Force Calculation. IEEE Trans. Magn., vol. 42, n° 4, p. 663-666.
Fenchel W. (1949). On Conjugate Convex Functions. Can. J. Math., vol. 1, n° 1, p. 73-77.
Henrotte F., Hameyer K. (2007). A Theory for electromagnetic Force formulas in continuous media. IEEE Trans. Magn., vol. 43, n° 4, p. 553-56.
Sánchez Grandía R., Vives Fos R., Aucejo Galindo V. (2006). Magnetostatic Maxwell’s tensors in magnetic media applying virtual works method from either energy or co-energy. Eur. Phys. J., vol. AP 35, p. 61-68.
Sánchez Grandía R., Aucejo Galindo V., Usieto Galve A., Vives Fos R. (2008). General Formulation For Magnetic Forces in Linear Materials and Permanent Magnets. IEEE Trans. Magn., vol. 44, n° 9, p. 2134-2140.
Schwartz L. (1966). Théorie des distributions, Hermann, Paris.
Seo J.-H., Choi H.-S. (2014). Computation of Magnetic Contact Forces. IEEE Trans. Magn., vol. 50, n° 2, p. 525-528.