A nonlinear and symmetric Maxwell tensor

A nonlinear and symmetric Maxwell tensor

Alain Bossavit

GeePs, 11 av. Joliot-Curie 91192 Gif-sur-Yvette Cedex, France

Corresponding Author Email: 
alain.bossavit@supelec.fr
Page: 
169-177
|
DOI: 
https://doi.org/10.3166/EJEE.18.169-177
Received: 
29/07/2015
| |
Accepted: 
14/01/2016
| | Citation

OPEN ACCESS

Abstract: 

We propose a generalization of the Maxwell tensor that allows the integration surface to pass through magnetized matter, even when the B–H law is non-linear and anisotropic. The tensor thus modified is symmetric.

Keywords: 

Maxwell’s tensor, magnetic forces.

Extended abstract
1. Introduction : notations, formules, but
2. « Le » tenseur de Maxwell
3. Un autre tenseur de Maxwell
4. Pourquoi la coénergie plutôt que l’énergie ?
Remerciements

À Alfredo Bermúdez pour sa suggestion d’essayer de symétriser le tenseur classique.

  References

Bermúdez A., Rodríguez A.L., Villa I. (2015). Extended Formulas to Compute Global and Contact Electromagnetic Force and Torque from Maxwell Stress Tensors: The Role of Symmetry. IEEE Trans. Magn. (submitted).

Bossavit A. (2011). Virtual Power Principle and Maxwell’s tensor: Which comes first? COMPEL, vol. 30, n° 6, p. 1804-1814.

Bossavit A. (2014). On forces in magnetized matter. IEEE Trans. Magn., vol. 50, n° 2, p. 229-232.

Choi H.-S., Park I.-H., Lee S.-H. (2006). Concept of Virtual Air Gap and Its Applications for Force Calculation. IEEE Trans. Magn., vol. 42, n° 4, p. 663-666.

Fenchel W. (1949). On Conjugate Convex Functions. Can. J. Math., vol. 1, n° 1, p. 73-77.

Henrotte F., Hameyer K. (2007). A Theory for electromagnetic Force formulas in continuous media. IEEE Trans. Magn., vol. 43, n° 4, p. 553-56.

Sánchez Grandía R., Vives Fos R., Aucejo Galindo V. (2006). Magnetostatic Maxwell’s tensors in magnetic media applying virtual works method from either energy or co-energy. Eur. Phys. J., vol. AP 35, p. 61-68.

Sánchez Grandía R., Aucejo Galindo V., Usieto Galve A., Vives Fos R. (2008). General Formulation For Magnetic Forces in Linear Materials and Permanent Magnets. IEEE Trans. Magn., vol. 44, n° 9, p. 2134-2140.

Schwartz L. (1966). Théorie des distributions, Hermann, Paris.

Seo J.-H., Choi H.-S. (2014). Computation of Magnetic Contact Forces. IEEE Trans. Magn., vol. 50, n° 2, p. 525-528.