Field Distribution in Polymeric MV-HVDC Model Cable under Temperature Gradient

Field Distribution in Polymeric MV-HVDC Model Cable under Temperature Gradient

Thi Thu Nga Vu Gilbert Teyssedre Bertrand Vissouvanadin Séverine Le Roy Christian Laurent Mohamed Mammeri Isabelle Denizet 

LAPLACE, Université de Toulouse ; UPS, INPT ; 118 route de Narbonne, 31062 Toulouse cedex 9, France

LAPLACE ; CNRS, 31062 Toulouse, France

SilecCable, rue de Varennes Prolongée, 77876 Montereau Cedex

Electric University Power, 235 Hoang Quoc Viet Street, Hanoi, Vietnam

Corresponding Author Email: 
gilbert.teyssedre@laplace.univ-tlse.fr
Page: 
307-325
|
DOI: 
https://doi.org/10.3166/EJEE.17.307-325
Received: 
27 February 2015
| |
Accepted: 
29 October 2015
| | Citation

OPEN ACCESS

Abstract: 

One of the major problems regarding the development of HVDC cables is space charge build-up within the insulation of the cable which is nowadays mostly made with polymeric materials. The objective of this paper is to evaluate the influence of temperature gradient on space charge accumulation and electric field distribution in model medium voltage cables (MV-HVDC). These charge/field distributions are estimated by direct measurement or modelled from the temperature and field dependencies of material conductivity. Differences between model and measurement are discussed.

Keywords: 

HVDC power cables, space charge, electrical conductivity, stress inversion, crosslinked polyethylene, extruded insulation

1. Introduction
2. Experimental Conditions
3. Results
4. Discussion
5. Conclusions
  References

[1] Bodega R., Montanari, G.C., Morshuis P.H.F. (2004). Conduction current measurements on XLPE and EPR insulation, 2004 Annual Rep. IEEE Conf. Electr. Insul. Dielectr. Phenom. (CEIDP), p. 101-105.

[2] Boggs S., Dwight H., Hjerrild J., Holbol J.T., Henriksen M. (2001). Effect of insulation properties on the field grading of solid dielectric DC cable. IEEE Trans. Power Deliv., vol. 16, no 4, p. 456-462.

[3] Boufayed F., Teyssèdre G., Laurent C., Le Roy S., Dissado L.A., Ségur P., Montanari G.C. (2006).

[4] Models of bipolar charge transport in Polyethylene. J Appl. Phys. vol. 100, p. 104-105.

[5] Choo W., Chen G., Swingler S.G. (2011). Electric field in polymeric cable due to space charge accumulation under DC and temperature gradient. IEEE Electr. Insul. Mag., vol. 25, n° 3, p. 596-606.

[6] Delpino S., Fabiani D., Montanari G.C., Laurent C., Teyssedre G., Morshuis P.H.F., Bodega R., Dissado L.A. (2008). Polymeric HVDC cable design and space charge accumulation. Part 2: Insulation interfaces. IEEE Electr. Insul. Mag., vol. 24, no 1, p. 14-24.

[7] Eoll C.K. (1975). Theory of stress distribution in insulation of High-Voltage DC cables: Part

I. IEEE Trans. Electr. Insul., vol. 10, n° 1, p. 27-35.

[8] Fabiani D., Montanari G.C., Laurent C., Teyssedre G., Morshuis P.H.F., Bodega R., Dissado

[9] L.A. (2008). HVDC cable design and space charge accumulation. Part 3: Effect of temperature gradient. IEEE Electr. Insul. Mag., vol. 24, n° 2, p. 5-14.

[10] Holé S., Ditchi T., Lewiner, J. (2002). Can non-destructive space charge  measurement techniques have fallout in other fields? Proc. 11th Internat. Symp. Electrets (ISE), p. 32-35.

[11] Holé S., Lewiner, J. (2004). Direct measurement of trapped and free charge distributions in semiconductors. Appl. Phys. Lett. vol. 84, p. 1308-1310

[12] Lan L., Wu J., Yin Y., Zhong Q. (2014). Investigation on heterocharge accumulation in crosslinked polyethylene: Experiment and simulation. Jpn. J. Appl. Phys., vol. 53, n° 7 (071702).

[13] McAllister I.W., Crichton G.C., Pedersen A. (1994). Charge accumulation in DC cables: A macroscopic approach. Proc. IEEE Internat. Symp. Electr. Insul. (ISEI), p. 212-216.

[14] Mazzanti G., Marzinotto M. (2013). Extruded Cables for High-Voltage Direct-Current Transmission, Wiley-IEEE Press. New Jersey.

[15] Qin Shanshan, Boggs S. (2012). Design considerations for High Voltage DC components.

[16] IEEE Electr. Insul. Mag., vol. 28, n° 6, p. 36-44.

[17] Sekii Y., Maeno T. (2009). Generation and dissipation of negative heterocharges in XLPE  and EPR. IEEE Trans. Dielectr. Electr. Insul., vol.16, n° 3, p.668-675.

[18] Teyssedre G., Laurent C. (2005). Charge Transport Modeling in Insulating Polymers: From Molecular to Macroscopic Scale. IEEE Trans. Dielectr. Electr. Insul., vol. 12, p. 857-875

[19] Vissouvanadin B., Vu T.T.N., Berquez L., Le Roy S., Teyssedre G., Laurent C. (2014). Deconvolution techniques for space charge recovery using pulsed electroacoustic method in coaxial geometry. IEEE Trans. Dielectr. Electr. Insul., vol. 21, n° 2, p. 821-828.

[20] Vu T.T.N., Teyssedre G., Vissouvanadin B., Le Roy S., Laurent C. (2015). Correlating conductivity and space charge measurements in multi-dielectrics under various electrical and thermal stresses. IEEE Trans. Dielectr. Electr. Insul., vol. 22, p. 117-127.