OPEN ACCESS
In this paper, we propose new method to incorporate geometric shape prior into region-based active contours in order to improve its robustness to noise and occlusions. The proposed shape prior is defined after the registration of the level set functions associated with the active contour and a reference shape. The used registration method is based on phase correlation by the Analytical Fourier-Mellin Transform (AFMT). This representation, dedicated to gray levels images, makes it possible to manage several objects simultaneously. Experimental results show the ability of the proposed geometric shape prior to constrain an evolving curve towards a target shape. We highlight on synthetic and real images, the benefit of the new shape prior on segmentation results, in presence of occlusions and noise.
RÉSUMÉ
Dans cet article, nous proposons une méthode originale pour incorporer un a priori de forme dans un modèle de contours actifs basé région afin d’améliorer sa robustesse aux similitudes, bruit et occultations. Nous définissons un a priori de forme à partir du recalage des fonctions level set associées au contour actif et une forme de référence. Le recalage que nous proposons se base sur la corrélation de phase par la transformée de Fourier-Mellin analytique (TFMA). Cette représentation, dédiée aux images à niveaux de gris, permet de gérer simultanément plusieurs objets. Nous illustrons expérimentalement les capacités de ce nouvel a priori de forme à contraindre l’évolution du contour actif vers une forme cible. Enfin, nous mettons en évidence, sur des images de synthèse et réelles, son apport pour la segmentation d’images en présence de similitudes, d’occultations et de bruits.
active contours, shape prior, analytical Fourier-Mellin transform
MOTS-CLÉS
contours actifs, a priori de forme, transformée de Fourier-Mellin analytique
Caselles V., Kimmel R., Sapiro G. (1997). Geodesic active contours. International Journal of Computer Vision, vol. 22, n° 1, p. 61-79.
Caselles V., Catté F., Coll T., Dibos F. (1993). A geometric model for active contours. Numerische Mathematik, vol. 66, n° 1, p. 1-31. Chan
T., Zhu W. (2005). Level set based shape prior segmentation. CVPR. Chan T., Vese L. (2001). Active contours without edges. IEEE Transactions on Image Processing, vol. 10, n° 2, p. 266-277.
Charmi M.A., Mezghich M.A., M’Hiri S., Derrode S., Ghorbel F. (2010). Geometric shape prior to region-based active contours using Fourier-based shape alignment. IST.
Charmi M.A., Derrode S., Ghorbel F. (2009). Using Fourier-based shape alignment to add geometric prior to snakes. ICASSP.
Charmi M.A., Derrode S., Ghorbel F. (2008). Fourier-based shape prior for snakes. Pattern Recognition Letters, vol. 29, n° 7, p. 897-904.
Chen Y., Thiruvenkadam S., Tagare H.D., Huang F., Wilson D., Geiser E.A. (2001). On the incorporation of shape priors into geometric active contours. IEEE Workshop on Variational and Level Set Methods in Computer Vision.
Cohen L. (1991). On active contour models and balloons. Graphical Models Image Process. vol. 53, n° 2, p. 211-218.
Cremers D., Sochen N., Schnörr C. (2003). Toward Recognition-Based Variational Segmentation Using Shape Priors and Dynamic Labeling. Computer Science.
Derrode S., Ghorbel F. (2001). Robust and efficient Fourier Mellin Transform Approximations for gray level image reconstruction and complete invariant description. Computer Vision and Image Understanding, vol. 83, n° 1, p. 57-78.
Fang W., Chan K.L. (2007). Incorporating shape prior into geodesic active contours for detecting partially occluded object. Pattern Recognition, vol. 40, n° 1, p. 2163-2172.
Foulonneau A., Charbonnier P., Heitz F. (2009). Multi-reference shape priors for active contours. International Journal of Computer Vision, vol. 81, n° 1, p. 68-81.
Foulonneau A., Charbonnier P., Heitz F. (2006). Affine-invariant geometric shape priors for region-based active contours. PAMI, vol. 28, n° 8, p. 1352-1357.
Foulonneau A., Charbonnier P., Heitz F. (2004). Contraintes géométriques de formes pour les contours actifs orientés région : une approche basée sur les moments de Legendre. Traitement du signal, vol. 21, n° 2, p. 109-127.
Foulonneau A., Charbonnier P., Heitz F. (2003). Geometric shape priors for region-based active contours. IEEE Conf. Image Processing. Ghorbel F. (1998). Towards a unitary formulation for invariant image description: application to image coding. An. of telecom, vol. 153, n° 3, p. 145-155.
Ghorbel F. (1994). A complete invariant description for grey-Level images by the harmonic analysis approach. Patter Recognition Letters, vol. 15, n° 1, p. 1043-1051.
Kass M., Witkin A., Terzopoulos D. (1988). Snakes: active contour models. International Journal of Computer Vision, vol. 1, n° 4, p. 321-331.
Leventon M., Grimson E., Faugeras O. (2000). Statistical shape influence in geodesic active contours. Computer Vision and Pattern Recognition.
Malladi R., Sethian J., Vemuri B. (1995). Shape modeling with front propagation: A level set approach. PAMI, vol. 17, n° 2, p. 158-175.
Marcel B., Briot M., Murietta R. (1997). Calcul de translation et rotation par la transformation de Fourier. Traitement du signal, vol. 14, no 2, p. 135-149.
Osher S., Sethian J.A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulation. J.of Computational Physics, vol. 79, n° 1, p. 12-49.
Paragios N., Deriche R. (1999). Geodesic active regions for supervised texture segmentation. International Conference on Computer Vision.
Xu C., Prince L. (1997). Gradient vector flow: A new external force for snakes. Computer Vision and Pattern Recognition, 1997.