Nano SiO2 catalyzed synthesis of Imidazo[1,2-a]pyridines

Nano SiO2 catalyzed synthesis of Imidazo[1,2-a]pyridines

Tejeswararao Dharmana Koteswara Rao Kola Nagamani Naidu Bonnada 

GMR Institute of Technology, Rajam, Andhra Pradesh, PIN 532127, India

Corresponding Author Email: 
tejeswararao.d@gmrit.org
Page: 
547-553
|
DOI: 
https://doi.org/10.3166/ACSM.42.547-553
Received: 
| |
Accepted: 
| | Citation

OPEN ACCESS

Abstract: 

 A facile microwave assisted reaction of phenacyl bromide and 2-amino pyridine is catalyzed by Nano SiO2 under solvent free conditions to give corresponding Imidazo[1,2-a]pyridines in good yields. Reactions proceed with high efficiency and good functional group tolerance. This approach provides a useful protocol for the preparation of highly substituted Imidazo[1,2-a]pyridine derivatives

Keywords: 

nano SiO2, microwave irradiation, Imidazo[1,2-a]pyridines, phenacyl bromide

1. Introduction
2. Materials and methods
3. Results and discussion
4. Conclusion
Acknowledgements

We are highly thankful to GMR Institute of Technology, Rajam for financial assistance

  References

Bode M. L., Gravestock D., Moleele S. S., van der Westhuyzen C. W., Pelly S. C., Steenkamp P. A., Hoppe H. C., Khan T., Nkabinde L. A. (2011). Imidazo[1,2-a]pyridin-3-amines as potential HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem., Vol. 19, No. 14, pp. 4227-4237. https://doi.org/10.1016/j.bmc.2011.05.062

Cao H., Liu X., Zhao L., Cen J., Lin J., Zhu Q., Fu M. (2014). One-pot regiospecific synthesis of Imidazo[1,2-a]pyridines: A novel, metal-free, three-component reaction for the formation of C–N, C–O, and C–S bonds. Org. Lett., Vol. 16, No. 1, pp. 146-149. https://doi.org/10.1021/ol4031414 

Dai W., Petersen J. L., Wang K. K. (2005). Synthesis of Indeno-fused derivatives of Quinolizinium salts, Imidazo[1,2-a]pyridine, Pyrido[1,2-a]indole, and 4H-Quinolizin-4-one via Benzannulated Enyne−Allenes. J. Org. Chem., Vol. 70, No. 17, pp. 6647-6652. https://doi.org/10.1021/jo0505730. 

Enguehard C., Renou J. L., Allouchi H., Leger J. M., Gueiffier A. (2000). Synthesis of Diaryl-substituted Imidazo[1, 2-a]pyridines designed as potential aromatase inhibitors. Chem. Pharm. Bull., Vol. 48, No. 7, pp. 935-940. https://doi.org/10.1248/cpb.48.935

Hanson S. M., Morlock E. V., Satyshur K. A., Czajkowski C. (2008). Structural requirements for eszopiclone and zolpidem binding to the gamma-aminobutyric acid type-A (GABAA) receptor are different. J. Med. Chem., Vol. 51, No. 22, pp. 7243-7252. https://doi.org/10.1021/jm800889m 

Hassan A. R., Adesanya S. O., Lebelo R. S., Falade J. A. (2017). Irreversibility analysis for a mixed convective flow of a reactive couple stress fluid flow through channel saturated porous materials. International Journal of Heat and Technology, Vol. 3, No. 35, pp. 633-638. https://doi.org/10.18280/ijht.350321

Kim O., Jeong Y., Lee H., Hong S. (2011). Design and synthesis of imidazopyridine analogues as inhibitors of phosphoinositide 3-kinase signaling and angiogenesis. J. Med. Chem., Vol. 54, No. 7, pp. 2455-2466. https://doi.org/10.1021/jm101582z 

Roberts B. A., Strauss C. R. (2005). Toward rapid, “Green”, predictable microwave-assisted synthesis. Acc. Chem. Res., Vol. 8, No. 38, pp. 653-661. https://doi.org/110.1021/ar040278m