Experimental Tests on a Hybrid Timber-Frame Wall System

Experimental Tests on a Hybrid Timber-Frame Wall System

M. Izzi D. Casagrande E. Sinito G. Pasetto A. Polastri

CNR-IVALSA, Via Biasi, San Michele all’Adige, Italy

University of Trieste, Piazzale Europa, Trieste, Italy

X-Lam Dolomiti, Via della Stazione, Castel Ivano, Italy

Page: 
872-883
|
DOI: 
https://doi.org/10.2495/CMEM-V5-N6-872-883
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

This paper presents an innovative lateral load-resisting wall system, which is an evolution of the light-timber frame (LTF) shear walls currently available on the market. In comparison to traditional LTF walls, the novelty aspect is the use of cross-laminated timber (CLT) beams and studs instead of solid timber elements. Thanks to this ‘hybrid’ approach, this new system combines some peculiar aspects of LTF structures (such as the limited weight and the high dissipative behaviour) with the potentials of CLT. Moreover, the use of CLT elements limits the issues due to the compressive deformations on bottom beams and permits to employ some innovative connections with high mechanical properties. Cyclic shear tests are carried out on two configurations of interest, assembled by considering different layouts of the load-bearing elements. Test results are compared to the experimental data obtained on similar LTF systems and differences are critically discussed.

Keywords: 

Cross-Laminated Timber, cyclic shear test, emergency housing facilities, hybrid structures, Light-framed wall system, seismic behaviour

  References

[1] Filiatrault, A., Christovasilis, I.P., Wanitkorkul, A. & Van de Lindt, J.W., Experimental seismicresponse of a full-scale light-frame wood building. Journal of Structural Engineering, 136(3),pp. 246–254, 2010.https://doi.org/10.1061/(ASCE)ST.1943-541X.0000112

[2] Van de Lindt, J.W., Pei, S., Pryor, S.E., Shimizu, H. & Isoda, H., Experimental seismic responseof a full-scale six-story light-frame wood building. Journal of Structural Engineering, 136(10),pp. 1262–1272, 2010.https://doi.org/10.1061/(ASCE)ST.1943-541X.0000222

[3] Ceccotti, A., Sandhaas, C., Okabe, M., Yasumura, M., Minowa, C. & Kawai, N., SOFIEproject – 3D shaking table test on a seven-storey full-scale cross-laminated building.Earthquake Engineering & Structural Dynamics, 42(13), pp. 2003–2021, 2013.https://doi.org/10.1002/eqe.2309

[4] Seim, W. & Vogt, T., Experimentelle und rechnerische Untersuchungen zur praxisgerechtenVerankerung von Holzrahmenwänden. International Wood Construction Conference(Holzbau-Forum), Garmisch-Partenkirchen, Germany, 2013.

[5] Seim, W., Hummel, J. & Vogt, T., Earthquake design of timber structures: remarks onforce-based design procedures for different wall systems. Engineering Structures, 76,pp. 124–137, 2014.https://doi.org/10.1016/j.engstruct.2014.06.037

[6] Gavric, I., Fragiacomo, M. & Ceccotti, A., Cyclic behavior of CLT wall systems:Experimental tests and analytical prediction models. Journal of Structural Engineering,141(11), 04015034(1–14), 2015.https://doi.org/10.1061/(ASCE)ST.1943-541X.0001246

[7] Flatscher, G., Bratulic, K. & Schickhofer, G., Experimental tests on cross-laminatedtimber joints and walls. Proceedings of the ICE – Structures and Buildings, 168(11),pp. 868–877, 2015.https://doi.org/10.1680/stbu.13.00085

[8] Flatscher, G. & Schickhofer, G., Shaking-table test of a cross-laminated timber structure.Proceedings of the ICE – Structures and Buildings, 168(11), pp. 878–888, 2015.https://doi.org/10.1680/stbu.13.00086

[9] Grossi, P., Sartori, T. & Tomasi, R., Tests on timber frame walls under in-plane forces:part 1. Proceedings of the ICE – Structures and Buildings, 168(11), pp. 826–839, 2015.https://doi.org/10.1680/stbu.13.00107

[10] Grossi, P., Sartori, T. & Tomasi, R., Tests on timber frame walls under in-plane forces:part 2. Proceedings of the ICE – Structures and Buildings, 168(11), pp. 840–852, 2015.https://doi.org/10.1680/stbu.13.00108

[11] Tomasi, R., Casagrande, D., Grossi, P. & Sartori, T., Shaking table tests on a three-storeytimber building. Proceedings of the ICE – Structures and Buildings, 168(11), pp. 853–867,2015.https://doi.org/10.1680/jstbu.14.00026

[12] Casagrande, D., Grossi, P. & Tomasi, R., Shake table tests on a full-scale timber-framebuilding with gypsum fibre boards. European Journal of Wood and Wood Products,74(3), 425–442, 2016.https://doi.org/10.1007/s00107-016-1013-6

[13] Popovski, M. & Gavric, I., Performance of a 2-story CLT house subjected to lateralloads. Journal of Structural Engineering, 142(4), E4015006(1–12), 2016.https://doi.org/10.1061/(ASCE)ST.1943-541X.0001315

[14] Yasumura, M., Kobayashi, K., Okabe, M., Miyake, T. & Matsumoto, K., Full-scaletests and numerical analysis of low-rise CLT structures under lateral loading. Journalof Structural Engineering, 142(4), E4015007(1–12), 2016.https://doi.org/10.1061/(ASCE)ST.1943-541X.0001348

[15] ETA-15/0632. X-RAD: Three-dimensional nailing plate. OIB-Austria, Vienna, Austria,2015.

[16] EN 1995-1-1:2004/A2. Eurocode 5: Design of timber structures. Part 1-1: General.Common rules and rules for buildings. CEN, Brussels, Belgium, 2014.

[17] Polastri, A., Brandner, R. & Casagrande, D., Experimental analysis of a new connectionsystem for CLT structures. Structures and Architecture: Concepts, Applications andChallenges, pp. 119–127, 2016.https://doi.org/10.1201/b20891-14

[18] Polastri, A., Giongo, I. & Piazza, M., An innovative connection system for CLT structures.Structural Engineering International, 2017. (Accepted, in press).

[19] Casagrande, D., Sartori, T. & Tomasi, R., Capacity design approach for multi-storeytimber-frame buildings. INTER 2014 Meeting, Bath, United Kingdom (Paper 47-15-3),2014.

[20] Follesa, M., Fragiacomo, M., Vassallo, D., Piazza, M., Tomasi, R., Rossi, S. & Casagrande,D., A proposal for a new background document of Chapter 8 of Eurocode 8. INTER 2015Meeting, Šibenik, Croatia (Paper 48-7-3), 2015.

[21] Casagrande, D., Rossi, S., Tomasi, R. & Mischi, G., A predictive analytical model forthe elasto-plastic behaviour of a light timber-frame shear-wall. Construction and BuildingMaterials, 102, pp. 1113–1126, 2016.https://doi.org/10.1016/j.conbuildmat.2015.06.025

[22] Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile: Lineeguida per l’individuazione delle aree di ricovero per strutture prefabbricate di protezionecivile. Direttiva del Presidente del Consiglio dei Ministri (Gazzetta Ufficiale n. 44 del 23febbraio 2005).

[23] Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile: Manualetecnico per l’allestimento delle aree di ricovero per strutture prefabbricate di protezionecivile. Approvato con Decreto del Capo del Dipartimento della Protezione Civile (n. 1243del 24 marzo 2005).

[24] ETA-12/0347, European Technical Assessment. Cross Laminated Timber (CLT) – Solidwood slab elements to be used as structural elements in buildings. OIB-Austria, Vienna,Austria, 2013.

[25] EN 12512:2001/A1, Timber structures. Test methods. Cyclic testing of joints made withmechanical fasteners. CEN, Brussels, Belgium, 2005.

[26] Izzi, M., Flatscher, G., Fragiacomo, M. & Schickhofer, G., Experimental investigationsand design provisions of steel-to-timber joints with annular-ringed shank nails for Cross-Laminated Timber structures. Construction and Building Materials, 122, pp. 446–457,2016.https://doi.org/10.1016/j.conbuildmat.2016.06.072