OPEN ACCESS
Due to the need to know and modify the radiation pattern of the ultrasonic sensors, to suit them to a particular application, in this paper is presented an automated measure system to obtain the radiation pattern for ultrasonic sensors in air. The system allows to obtain the radiation pattern in different conditions, for example for checking the characteristics of the ultrasonic sensors provided by the manufacturer, or for obtaining the modifications in the radiation pattern when a mechanical element is coupled to the ultrasonic sensor. In addition, the system has been improved by shortening the measurement time and decreasing the volume of data needed to carry out a measure. Furthermore, due to the fact of implementing the system inside a climatic chamber, the system allows to analyze the influence of environmental factors such as temperature and humidity, plus an evaluation of the degradation behaviour of the ultrasonic sensors in air under conditions of high temperature and humidity. At the end of the paper, two measurements have been done and the results have been compared with the characteristics of the radiation pattern provided by the manufacturer. Finally, a robust measurement system is presented, designed to find the modifications in the radiation pattern of an ultrasonic sensor when it is coupled to a mechanical element.
automation, measure system, radiation pattern, sensors, signals processing, ultrasounds
[1] Carullo, A. & Parvis, M., An ultrasonic sensor for distance measurement in automotive applications. IEEE Sensors Journal, 1(2), pp. 143–147, 2001. doi: http://dx.doi.org/10.1109/JSEN.2001.936931
[2] Egaña, A., Seco, F. & Ceres, R., Processing of ultrasonic echo envelopes for object location with nearby receivers. IEEE Transactions on Instrumentation and Measurement, 57(12), pp. 2751–2755, 2008. doi: http://dx.doi.org/10.1109/TIM.2008.926408
[3] Abellanas, A., Frizera, A., Ceres, R., Raya, R. & Calderón, L., Ultrasonic time of fl ight estimation in assistive mobility: improvement of the model-echo fi tting. Proceedings Eurosensors XXII, Dresden, Germany, pp. 464–467, 2008.
[4] Pérez-Oria, J. & Groba, A.M., Object recognition using ultrasonic sensors in robotic applications. XIX Annual Conference of the IEEE Industrial Electronics Society, IECON93, Hawaii, USA, 1993.
[5] Llata, J.R., Sarabia, E.G. & Oria, J.P., Pattern recognition with ultrasonic sensors: a neural network evaluation. Sensor Review, 21(1), pp. 45–57, 2001. doi: http://dx.doi.org/10.1108/02602280110365653
[6] Rodríguez Martínez, J.A., Vitola Oyaga, J. & Sandoval Cantor, S.P., Diseño y construcción de un sistema para examen no destructivo de fallas y defectos en metales utilizando señales ultrasónicas. Revista Eia, ISSN: 1794-1237.
[7] Arce, J., Llata, J.R., Sarabia, E.G. & Oria, J.P., Automatic fault detection using ultrasonic techniques: expert system vs signal processing. IEEE International Symposium on Industrial Electronics, Pretoria, South Africa, 1998.
[8] Pérez-Oria, J., Rentería, L.A., Rodríguez, C., Fernández, M. & Llata, J.R., Ultrasonic dentifi cation techniques of defective pieces in hostile production environments. Forum Acusticum 2002, Sevilla, Spain, 2002.
[9] Rodríguez, C., Fernández, M., Alonso, L., Pérez-Oria, J., Ibarra, M., Arce, J. & Gutierrez, J., Automatización de un sistema de detección de defectos en piezas metálicas. XXXI Jornadas de Automática, JA2010, Jaen, España, 2010.
[10] Ramirez Gomez, F., Fernández Soler, M.A., Alonso Roldán, A., Delojo Morcillo, G., Valdecantos Martinez, C. & de los Ríos Rubalcaba, J.M., Métodos de ensayos no destructivos (Tomo I), Inta: Madrid, 1996.
[11] Álvarez Fernández, J.A. & Pérez Quintero, R., Ultrasonidos y «vida encefálica». Medicina Intensiva, 30(3), pp. 113–115, 2006. doi: http://dx.doi.org/10.1016/S0210-5691(06)74484-9
[12] Kinsler, L.E., Frey, A.R., Coppens, A.B. & Sanders, J.V., Fundamentals of Acoustics, Wiley, cop.: New York, 1982.
[13] Eisner, E., Complete solutions of Webster Horn equation. Journal of the Acoustical Society of America, 41, p. 1126, 1967.
[14] Alonso, L., Rodríguez, C., Fernández, M., Robla, S., Sarabia, E.G. & Pérez-Oria, J., Conformación mediante bocinas de lóbulos de radiación de sensores ultrasónicos. XXV Jornadas de Automática, JA2004, Ciudad Real (España), 2004.
[15] Alonso, L., Pérez-Oria, J.M., Fernández, M., Rodríguez, C. & Robla, S., Qualitative analysis of the infl uence of horns on ultrasonic lobes. Proceedings of Control and Applications, IASTED2005, Cancún (México), 2005.
[16] Udawalpola, R. & Berggren, M., Optimization of an acoustic horn with respect to effi ciency and directivity. International Journal for Numerical Methods in Engineering, 73(11), pp. 1571–1606, 2007. doi: http://dx.doi.org/10.1002/nme.2132
[17] Udawalpola, R., Wadbro, E. & Berggren, M., Optimization of a variable mouth acoustic horn. International Journal for Numerical Methods in Engineering, 85, pp. 591–606, 2011. doi: http://dx.doi.org/10.1002/nme.2982
[18] Bright, A., Analysis of a Folded Horn. Audio Engineering Society Convention Paper, 2003.
[19] Webster, A.G., Acoustical impedance and the theory of horns and of the phonograph. Proceedings of the National Academy of Sciences of the United States of America, pp. 275–282, 1919. Reprinted in J. Audio Engineering Soc., 25, pp. 24–28, 1977.
[20] Bängtsson, E., Noreland, D. & Berggren, M., Shape optimization of an acoustic horn. Computer Methods in Applied Mechanics and Engineering, 192(11–12), pp. 1533–1571, 2003. doi: http://dx.doi.org/10.1016/S0045-7825(02)00656-4
[21] Wadbro, E. & Berggren, M., Topology optimization of an acoustic horn computer methods. Applied Mechanics and Engineering, 196, pp. 420–436, 2006. doi: http://dx.doi.org/10.1016/j.cma.2006.05.005
[22] Martin, P.A., The horn-feed problem: sound waves in a tube joined to a cone, and related problems. Journal of Engineering Mathematics, 71(3), pp. 291–304, 2011. doi: http://dx.doi.org/10.1007/s10665-011-9454-8
[23] Fernández, M., Rodríguez, C., Alonso, L. & Pérez-Oria, J., Simulación del diagrama de radiación ultrasónico modifi cado por bocinas y validación experimental del modelo de elementos fi nitos. XXVII Jornadas de Automática, JA2006, Almería (España), 2006.
[24] Fernández, M., Rodríguez, C., Pérez-Oria, J.M., Ibarra, M. & Alonso, L., Ultrasonic sensors with mechanical couplers: simulation and validation. Proceedings of the 10th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE2010, Almeria (España), 2010.
[25] Noreland, D., Udawalpola, R., Seoane, P., Wadbro, E. & Berggren, M., An effi cient loudspeaker horn designed by numerical optimization: an experimental study. Technical Report, Umeå University (Sweden), 2010.
[26] Leo, L. & Beranek, A., Acoustical Measurements, Editorial E. H. S.: Buenos Aires, 1961.
[27] Murata Manufacturing Co., L. Ultrasonic sensors. Application Manual, available at http://www.murata.com/products/catalog/pdf/s15e.pdf
[28] Gutiérrez, M.I., Leija, L. & Vera, A., Determinación y Evaluación del Campo Acústico de Transductores Ultrasónicos para Fisioterapia. Simposio de Metrología, Santiago de Querétaro, México, 2008.
[29] Alonso Rentería, L., Rodríguez, C., Fernández, M., Robla, S. & Pérez-Oria, J.M., Compensation of environmental parameters for driving-aid ultrasonic systems in foggy conditions. Proceedings of World Automation Congress, WAC2004, Sevilla (España), 2004.
[30] Cacicedo, E., Freire, T., Martín, J.M., Calderon, L. & Ceres, R., Ultrasonicstemperature shapes the envelope. Sensor Review, 14(4), pp. 19–23, 1994. doi: http://dx.doi.org/10.1108/EUM0000000004234