Numerical Simulation of High-Speed Impacts Involving Metallic and Non-Metallic Materials

Numerical Simulation of High-Speed Impacts Involving Metallic and Non-Metallic Materials

Howie Fang Emre Palta Matthew Gutowski

Department of Mechanical Engineering & Engineering Science, University of North Carolina at Charlotte, USA

Page: 
463-475
|
DOI: 
https://doi.org/10.2495/CMEM-V6-N3-463-475
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

High-speed impacts such as ballistic and hurricane debris can cause severe damages due to the high kinetic energies in the impacting objects. A good understanding of the mechanism of high-speed impacts can help develop impact-resistant or protective systems. Experimental studies of high-speed impact problem, though valid and useful, are often limited and challenged by the large, nonlinear deformations and contacts involved in such problems. To this end, physical experiments are best used as a validation tool rather than an exploration tool for new system designs. In this study, nonlinear finite element simulations are performed to evaluate the response of metallic materials (e.g. steels) and non- metallic materials (e.g. woven fabrics) under high-speed impacts. In addition, the effects of layered structures of different types of materials as well as layer configurations are investigated.a

Keywords: 

contact, finite element, high-speed, impact, metallic, modelling, non-metallic, simulation

  References

[1] Zaid, A.I.O. & El-Kalay, A., An examination of the perforation of a mild steel plate by a flat-ended cylindrical projectile. International Journal of Mechanical Sciences, 15, pp. 129–143, 1973. https://doi.org/10.1016/0020-7403(73)90061-1

[2] Netherwood, P.H., Rate of penetration measurements. Memorandum Report ARBL_ MR_02978, US Army Research Lab, Aberdeen Proving Ground, MD, USA, 1979.

[3] Almohandes,A.A.,Abdel-Kader, M.S. & Eleiche,A.M., Experimental investigation of the ballistic resistance of steel-fiberglass reinforced polyester laminated plates. Composites Part B: Engineering, 27(5), pp. 447–458, 1996.https://doi.org/10.1016/1359-8368(96)00011-x

[4] Gupta, N.K. & Madhu, V., An experimental study of normal and oblique impact of hard-core projectile on single and layered plates. International Journal of Impact Engineering, 19(97), pp. 395–414. https://doi.org/10.1016/s0734-743x(97)00001-8

[5] Segletes, S.B. & Zukas, J.A., The effect of material interfaces on calculations of plate penetration. In: Hui, D., Jones, N. (Eds), Recent Advances in Impact Dynamics of Engineering Structures, AMD-Vol. 105, ASME, New York, 1989.

[6] Zukas, J.A., Effects of lamination and spacing on finite thickness plate perforation. Structures under Shock and Impact IV, 25, pp. 103–115, 1996.

[7] Zukas, J.A. & Scheffler, D.R., Impact effects in multilayered plates. International Journal of Solids and Structures, 38(19), pp. 3321–3328, 2001.https://doi.org/10.1016/s0020-7683(00)00260-2

[8] Dey, S., Børvik, T., Teng, X., Wierzbicki, T. & Hopperstad, O.S., On the ballistic resistance of double-layered steel plates: An experimental and numerical investigation. International Journal of Solids and Structures, 44(20), pp. 6701–6723, 2007. https://doi.org/10.1016/j.ijsolstr.2007.03.005

[9] Børvik, T., Dey, S. & Clausen, A.H., Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles. International Journal of Impact Engineering, 36, pp. 948–964, 2008.https://doi.org/10.1016/j.ijimpeng.2008.12.003

[10] Teng, X.Q., Dey, S., Børvik T. & Wierzbicki, T., Protection performance of double-layered metal shields against projectile impact. Journal of Mechanics of Materials and Structures, 2(7), pp. 1309–1330, 2007. https://doi.org/10.2140/jomms.2007.2.1309

[11] Teng, X., Wierzbicki, T. & Huang, M., Ballistic resistance of double-layered armor plates. International Journal of Impact Engineering, 35(8), pp. 870–884, 2008. https://doi.org/10.1016/j.ijimpeng.2008.01.008

[12] Corran, R.S.J., Shadbolt, P.J. & Ruiz, C., Impact loading of plates – An experimental inves- tigation. International Journal of Impact Engineering, 1(1), pp. 3–22, 1983. https://doi.org/10.1016/0734-743X(83)90010-6

[13] Cheeseman, B.A. & Bogetti, T.A., Ballistic impact into fabric and compliant composite laminates. Composite Structures, 61, pp. 161–173, 2003. https://doi.org/10.1016/S0263-8223(03)00029-1

[14] Laible, R.C. & Denommee, M.R. Laminates for ballistic protection. US Army Natick Laboratories. DTIC AD-A008 020, 1975.

[15] Shockey, D.A., Erlich, D.C. & Simons, J.W., Lightweight fragment barriers for commercial aircraft. 18th International Symposium on Ballistics, San Antonio. pp. 1192–1199, 1999.

[16] Lundin, S.J., Engine debris fuselage penetration testing, phase I. Office of Aviation Research, Washington, DC, 2001.

[17] Zhang, Y.X. & Yang, C.H., Recent development in finite element analysis for laminated composite plates. Composite Structures, 88, pp. 147–157, 2009. https://doi.org/10.1016/j.compstruct.2008.02.014

[18] Teng, J.G., Chen, S.F. & Hu, J.L., A finite- method for deformation analysis of woven fabrics. International Journal of Numerical Methods in Engineering, 46, pp. 2061–2098, 1995.https://doi.org/ 10.1002/(SICI)1097-0207(19991230)46:12<2061::AID- NME802>3.0.CO;2-Q

[19] Tan, P., Tong, L. & Steven, G.P., Micromechanics models for the elastic constants and failure strengths of plain weave composites. Composite Structures, 47, pp. 797–804, 1999. https://doi.org/10.1016/S0263-8223(00)00056-8

[20] Tabiei, A. & Ivanov, I., Computational micro-mechanical model of flexible woven fabric for finite element impact simulation. International Journal for Numerical Methods in Engineering, 53, pp. 1259–1276, 2002. https://doi.org/10.1002/nme.321

[21] Ivanov, I. & Tabiei, A., Loosely woven fabric model with viscoelastic crimped fibres for ballistic impact simulations. International Journal for Numerical Methods in Engineering, 61, pp. 1565–1583, 2004. https://doi.org/10.1002/nme.1113

[22] Boisse, P., Gasser, A., Hagege, B. & Billoet, J., Analysis of the mechanical behavior of woven fibrous material using virtual tests at the unit cell level. Journal of Materials Science, 40, pp. 5955–5962, 2005. https://doi.org/10.1007/s10853-005-5069-7

[23] Xue, P., Cao, J. & Chen, J. Integrated micro/macro-mechanical model of woven fabric composites under large deformation. Composite Structures, 70, pp. 69–80, 2005. https://doi.org/10.1016/j.compstruct.2004.08.013

[24] Barauskas, R., Multi-scale modeling of textile structures in terminal ballistics. Gothenburg. 6th European LS-DYNA Users’ Conference, pp. 141–153, 2007.

[25] Nilakantan, G., Keefe, M., Bogetti, T.A., Adkinson, R. & Gillespie, J.W., On the finite element analysis of woven fabric impact using multiscale modeling techniques. International Journal of Solids and Structures, 4, pp. 2300–2315, 2010. https://doi.org/10.1016/j.ijsolstr.2010.04.029

[26] Chang, F.K. & Chang, K.Y., A progressive damage model for laminated composites containing stress concentrations. Journal of Composite Materials, 21, pp. 834–855, 1987a. https://doi.org/10.1177/002199838702100904

[27] Chang, F.K. & Chang, K.Y., Post failure analysis of bolted composite joints in tension or shear out mode failure. Journal of Composite Materials, 21, pp. 809–855, 1987b. https://doi.org/10.1177/002199838702100903

[28] Hashin Z.Z., Failure criteria for unidirectional fiber composites. ASME Journal of Applied Mechanics, 47(2), pp. 329–334, 1980. https://doi.org/10.1115/1.3153664

[29] Van Hoof, J., Cronin, D.S., Worswick, M.J., Williams, K.V. & Nandall, D., Numerical head and composite helmet models to predict blunt trauma. The 19th International Symposium on Ballistic, Interlaken, Switzerland, 2001.

[30] Tan, L.B., Tse, K.M., Lee, H.P., Tan, V.B.C. & Lim, S.P., Performance of an advanced combat helmet with different interior cushioning systems in ballistic impact: Experiments and finite element simulations. International Journal of Impact Engineering, 50, pp. 99–112, 2012. https://doi.org/10.1016/j.ijimpeng.2012.06.003

[31] Gower, H.L., Cronin, D.S. & Plumtree, A., Ballistic impact response of laminated composite panels. International Journal of Impact Engineering, 35(9), pp. 1000–1008, 2008. https://doi.org/10.1016/j.ijimpeng.2007.07.007

[32] Johnson, G.R. & Cook, W.H.,  A constitutive model and data for metals subjected      to large strains, high strain rates and high temperatures. The 7th International Symposium on Ballistics, The Hague, Netherlands, p. 541, 1983.

[33] Cockcroft, M.G. & Latham, D.J., Ductility and the workability of metals. Journal of the Institute of Metals, 96, pp. 33–39, 1968.

[34] Shim, V.P.W., Tan, V.B.C. & Tay, T.E., Modeling deformation and damage characteristics of woven fabric under small projectile impact. International Journal of Impact Engineering, 16(4), pp. 585–605, 1995. https://doi.org/10.1016/0734-743X(94)00063-3

[35] Martinez, M.A., Navarro, C., Cortes, R. & Rodriguez, J., Friction and wear behaviour of Kevlar fabrics. Journal of Materials Science, 28, pp. 1305–1311, 1993. https://doi.org/10.1007/BF01191969

[36] Starratt, D.L., An instrumented experimental study of the ballistic response of textile materials. The University of British Columbia, Vancouver, 1998.

[37] Recht, R.F. & Ipson, T.W., Ballistic perforation dynamics. Journal of Applied Mechanics, 30(3), p. 384, 1963. https://doi.org/10.1115/1.3636566

[1] Zaid, A.I.O. & El-Kalay, A., An examination of the perforation of a mild steel plate by a flat-ended cylindrical projectile. International Journal of Mechanical Sciences, 15, pp. 129–143, 1973. https://doi.org/10.1016/0020-7403(73)90061-1

[2] Netherwood, P.H., Rate of penetration measurements. Memorandum Report ARBL_ MR_02978, US Army Research Lab, Aberdeen Proving Ground, MD, USA, 1979.

[3] Almohandes,A.A.,Abdel-Kader, M.S. & Eleiche,A.M., Experimental investigation of the ballistic resistance of steel-fiberglass reinforced polyester laminated plates. Composites Part B: Engineering, 27(5), pp. 447–458, 1996.https://doi.org/10.1016/1359-8368(96)00011-x

[4] Gupta, N.K. & Madhu, V., An experimental study of normal and oblique impact of hard-core projectile on single and layered plates. International Journal of Impact Engineering, 19(97), pp. 395–414. https://doi.org/10.1016/s0734-743x(97)00001-8

[5] Segletes, S.B. & Zukas, J.A., The effect of material interfaces on calculations of plate penetration. In: Hui, D., Jones, N. (Eds), Recent Advances in Impact Dynamics of Engineering Structures, AMD-Vol. 105, ASME, New York, 1989.

[6] Zukas, J.A., Effects of lamination and spacing on finite thickness plate perforation. Structures under Shock and Impact IV, 25, pp. 103–115, 1996.

[7] Zukas, J.A. & Scheffler, D.R., Impact effects in multilayered plates. International Journal of Solids and Structures, 38(19), pp. 3321–3328, 2001.https://doi.org/10.1016/s0020-7683(00)00260-2

[8] Dey, S., Børvik, T., Teng, X., Wierzbicki, T. & Hopperstad, O.S., On the ballistic resistance of double-layered steel plates: An experimental and numerical investigation. International Journal of Solids and Structures, 44(20), pp. 6701–6723, 2007. https://doi.org/10.1016/j.ijsolstr.2007.03.005

[9] Børvik, T., Dey, S. & Clausen, A.H., Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles. International Journal of Impact Engineering, 36, pp. 948–964, 2008.https://doi.org/10.1016/j.ijimpeng.2008.12.003

[10] Teng, X.Q., Dey, S., Børvik T. & Wierzbicki, T., Protection performance of double-layered metal shields against projectile impact. Journal of Mechanics of Materials and Structures, 2(7), pp. 1309–1330, 2007. https://doi.org/10.2140/jomms.2007.2.1309

[11] Teng, X., Wierzbicki, T. & Huang, M., Ballistic resistance of double-layered armor plates. International Journal of Impact Engineering, 35(8), pp. 870–884, 2008. https://doi.org/10.1016/j.ijimpeng.2008.01.008

[12] Corran, R.S.J., Shadbolt, P.J. & Ruiz, C., Impact loading of plates – An experimental inves- tigation. International Journal of Impact Engineering, 1(1), pp. 3–22, 1983. https://doi.org/10.1016/0734-743X(83)90010-6

[13] Cheeseman, B.A. & Bogetti, T.A., Ballistic impact into fabric and compliant composite laminates. Composite Structures, 61, pp. 161–173, 2003. https://doi.org/10.1016/S0263-8223(03)00029-1

[14] Laible, R.C. & Denommee, M.R. Laminates for ballistic protection. US Army Natick Laboratories. DTIC AD-A008 020, 1975.

[15] Shockey, D.A., Erlich, D.C. & Simons, J.W., Lightweight fragment barriers for commercial aircraft. 18th International Symposium on Ballistics, San Antonio. pp. 1192–1199, 1999.

[16] Lundin, S.J., Engine debris fuselage penetration testing, phase I. Office of Aviation Research, Washington, DC, 2001.

[17] Zhang, Y.X. & Yang, C.H., Recent development in finite element analysis for laminated composite plates. Composite Structures, 88, pp. 147–157, 2009. https://doi.org/10.1016/j.compstruct.2008.02.014

[18] Teng, J.G., Chen, S.F. & Hu, J.L., A finite- method for deformation analysis of woven fabrics. International Journal of Numerical Methods in Engineering, 46, pp. 2061–2098, 1995.https://doi.org/ 10.1002/(SICI)1097-0207(19991230)46:12<2061::AID- NME802>3.0.CO;2-Q

[19] Tan, P., Tong, L. & Steven, G.P., Micromechanics models for the elastic constants and failure strengths of plain weave composites. Composite Structures, 47, pp. 797–804, 1999. https://doi.org/10.1016/S0263-8223(00)00056-8

[20] Tabiei, A. & Ivanov, I., Computational micro-mechanical model of flexible woven fabric for finite element impact simulation. International Journal for Numerical Methods in Engineering, 53, pp. 1259–1276, 2002. https://doi.org/10.1002/nme.321

[21] Ivanov, I. & Tabiei, A., Loosely woven fabric model with viscoelastic crimped fibres for ballistic impact simulations. International Journal for Numerical Methods in Engineering, 61, pp. 1565–1583, 2004. https://doi.org/10.1002/nme.1113

[22] Boisse, P., Gasser, A., Hagege, B. & Billoet, J., Analysis of the mechanical behavior of woven fibrous material using virtual tests at the unit cell level. Journal of Materials Science, 40, pp. 5955–5962, 2005. https://doi.org/10.1007/s10853-005-5069-7

[23] Xue, P., Cao, J. & Chen, J. Integrated micro/macro-mechanical model of woven fabric composites under large deformation. Composite Structures, 70, pp. 69–80, 2005. https://doi.org/10.1016/j.compstruct.2004.08.013

[24] Barauskas, R., Multi-scale modeling of textile structures in terminal ballistics. Gothenburg. 6th European LS-DYNA Users’ Conference, pp. 141–153, 2007.

[25] Nilakantan, G., Keefe, M., Bogetti, T.A., Adkinson, R. & Gillespie, J.W., On the finite element analysis of woven fabric impact using multiscale modeling techniques. International Journal of Solids and Structures, 4, pp. 2300–2315, 2010. https://doi.org/10.1016/j.ijsolstr.2010.04.029

[26] Chang, F.K. & Chang, K.Y., A progressive damage model for laminated composites containing stress concentrations. Journal of Composite Materials, 21, pp. 834–855, 1987a. https://doi.org/10.1177/002199838702100904

[27] Chang, F.K. & Chang, K.Y., Post failure analysis of bolted composite joints in tension or shear out mode failure. Journal of Composite Materials, 21, pp. 809–855, 1987b. https://doi.org/10.1177/002199838702100903

[28] Hashin Z.Z., Failure criteria for unidirectional fiber composites. ASME Journal of Applied Mechanics, 47(2), pp. 329–334, 1980. https://doi.org/10.1115/1.3153664

[29] Van Hoof, J., Cronin, D.S., Worswick, M.J., Williams, K.V. & Nandall, D., Numerical head and composite helmet models to predict blunt trauma. The 19th International Symposium on Ballistic, Interlaken, Switzerland, 2001.

[30] Tan, L.B., Tse, K.M., Lee, H.P., Tan, V.B.C. & Lim, S.P., Performance of an advanced combat helmet with different interior cushioning systems in ballistic impact: Experiments and finite element simulations. International Journal of Impact Engineering, 50, pp. 99–112, 2012. https://doi.org/10.1016/j.ijimpeng.2012.06.003

[31] Gower, H.L., Cronin, D.S. & Plumtree, A., Ballistic impact response of laminated composite panels. International Journal of Impact Engineering, 35(9), pp. 1000–1008, 2008. https://doi.org/10.1016/j.ijimpeng.2007.07.007

[32] Johnson, G.R. & Cook, W.H.,  A constitutive model and data for metals subjected      to large strains, high strain rates and high temperatures. The 7th International Symposium on Ballistics, The Hague, Netherlands, p. 541, 1983.

[33] Cockcroft, M.G. & Latham, D.J., Ductility and the workability of metals. Journal of the Institute of Metals, 96, pp. 33–39, 1968.

[34] Shim, V.P.W., Tan, V.B.C. & Tay, T.E., Modeling deformation and damage characteristics of woven fabric under small projectile impact. International Journal of Impact Engineering, 16(4), pp. 585–605, 1995. https://doi.org/10.1016/0734-743X(94)00063-3

[35] Martinez, M.A., Navarro, C., Cortes, R. & Rodriguez, J., Friction and wear behaviour of Kevlar fabrics. Journal of Materials Science, 28, pp. 1305–1311, 1993. https://doi.org/10.1007/BF01191969

[36] Starratt, D.L., An instrumented experimental study of the ballistic response of textile materials. The University of British Columbia, Vancouver, 1998.

[37] Recht, R.F. & Ipson, T.W., Ballistic perforation dynamics. Journal of Applied Mechanics, 30(3), p. 384, 1963. https://doi.org/10.1115/1.3636566