Computer-Support Tool to Optimize Bridges Automatically

Computer-Support Tool to Optimize Bridges Automatically

T. GarcÍa-Segura V. Yepes J. Alcalá

Institute of Concrete Science and Technology (ICITECH), Universitat Politècnica de València, Spain

Page: 
171-178
|
DOI: 
https://doi.org/10.2495/CMEM-V5-N2-171-178
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

In bridge design, many variables like material grades, cross-sectional dimensions, passive and prestressing steel need to be modeled to evaluate  structural performance. Efficiency gains are intended while satisfying the serviceability and ultimate limit states imposed by the structural code. In this paper, a computer-support tool is presented to analyze continuous post-tensioned concrete (PSC) box-girder road bridges, to minimize the cost as well as to provide optimum design variables. The program encompasses six modules to perform the optimization process, the finite-element analysis, and the limit states verification. The methodology is defined and applied to a case study. A harmony search (HS) algorithm optimizes 33 variables that define a three-span PSC box-girder bridge located in a coastal region. However, the same procedure could be implemented to optimize any structure. This tool enables one to define the fixed parameters and the variables that are optimized by the heuristic algorithm. Moreover, the output provides useful rules to guide engineers in designing PSC box-girder road bridges.

Keywords: 

box-girder bridges, computer-support tool, harmony search, post-tensioned concrete

  References

[1] Hare, W., Nutini, J. & Tesfamariam S., A survey of non-gradient optimization methods in structural engineering. Advances in Engineering Software, 59, pp. 19–28, 2013. http://dx.doi.org/10.1016/j.advengsoft.2013.03.001

[2] Cai, H. & Aref, A.J., A genetic algorithm-based multi-objective optimization for hybrid fiber reinforced polymeric deck and cable system of cable-stayed bridges. Structural and Multidisciplinary Optimization, 52(3), pp. 583–594, 2015.

http://dx.doi.org/10.1007/s00158-015-1266-4

[3] Martí, J.V., Yepes, V. & González-Vidosa, F., Memetic algorithm approach to designing precast-prestressed concrete road bridges with steel fiber reinforcement. Journal of Structural Engineering, 141(2), 04014114, 2015. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001058

[4] Martí, J.V., González-Vidosa, F., Yepes, V. & Alcalá, J., Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, pp. 342–352, 2013. http://dx.doi.org/10.1016/j.engstruct.2012.09.014

[5] Martí, J.V., García-Segura, T. & Yepes, V., Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, pp. 231–240, 2016. http://dx.doi.org/10.1016/j.jclepro.2016.02.024

[6] Yepes, V., Martí, J.V. & García-Segura, T., Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, pp. 123–134, 2015. http://dx.doi.org/10.1016/j.autcon.2014.10.013

[7] Yepes, V., García-Segura, T. & Moreno-Jiménez, J.M., A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), pp. 1024–1036, 2015. http://dx.doi.org/10.1016/j.acme.2015.05.001

[8] García-Segura, T., Yepes, V., Martí, J.V. & Alcalá, J., Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), pp. 1190–1205, 2014. http://dx.doi.org/10.1590/S1679-78252014000700007

[9] Martinez, F.J., Gonzalez-Vidosa, F., Hospitaler, A. & Alcala, J., Design of tall bridge piers by ant colony optimization. Engineering Structures, 33(8), pp. 2320–2329, 2011. http://dx.doi.org/10.1016/j.engstruct.2011.04.005

[10] Gandomi, A.H., Kashani, A.R., Roke, D.A. & Mousavi, M., Optimization of retaining wall design using recent swarm intelligence techniques. Engineering Structures, 103, pp. 72–84, 2015. http://dx.doi.org/10.1016/j.engstruct.2015.08.034

[11] Yepes, V., Alcala, J., Perea, C. & González-Vidosa, F., A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3), pp. 821–830, 2008. http://dx.doi.org/10.1016/j.engstruct.2007.05.023

[12] Degertekin, S.O., Saka, M.P. & Hayalioglu, M.S., Optimal load and resistance factor design of geometrically nonlinear steel space frames via tabu search and genetic algorithm. Engineering Structures, 30(1), pp. 197–205, 2008. http://dx.doi.org/10.1016/j.engstruct.2007.03.014

[13] García-Segura, T., Yepes, V., Alcalá, J. & Pérez-López, E., Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, pp. 112–122, 2015. http://dx.doi.org/10.1016/j.engstruct.2015.03.015

[14] de Medeiros, G.F. & Kripka, M., Optimization of reinforced concrete columns according to different environmental impact assessment parameters. Engineering Structures, 59, pp. 185–194, 2014. http://dx.doi.org/10.1016/j.engstruct.2013.10.045

[15] Ates, S., Numerical modelling of continuous concrete box girder bridges considering construction stages. Applied Mathematical Modelling, 35(8), pp. 3809–3820, 2011. http://dx.doi.org/10.1016/j.apm.2011.02.016

[16] Schlaich, J. & Scheef, H., Concrete Box-Girder Bridges, International Association for Bridge and Structural Engineering. Zürich, Switzerland, 1982.

[17] Fomento, M., New Overpasses: General Concepts, Ministerio de Fomento, Madrid, Spain, 2000 (in Spanish).

[18] Geem, Z.W., Kim, J.H. & Loganathan, G.V., A new heuristic optimization algorithm: harmony search. Simulation, 76(2), pp. 60–68, 2001. http://dx.doi.org/10.1177/003754970107600201

[19] Fomento, M., IAP-11: Code on the Actions for the Design of Road Bridges, Ministerio de Fomento, Madrid, Spain, 2011 (in Spanish).

[20] Fomento, M., EHE-08: Code on structural concrete, Ministerio de Fomento, Madrid, Spain, 2008 (in Spanish).

[21] European Committee for Standardisation., EN1992-2:2005. Eurocode 2: Design of Concrete Structures- Part 2: Concrete Bridge-Design and Detailing Rules, Brussels, 2005.

[22] European Committee for Standardisation., EN 1991-2:2002. Eurocode 1: Actions on Structures-Part 2: Traffic Loads Bridges, Brussels, 2002.

[23] BEDEC. Institute of Construction Technology of Catalonia. Barcelona, Spain, available at: www.itec.cat