Modeling of Unsteady Heat Transfer by Impact Between Gas Particles and a Cold Wall in a Spherical Combustion Vessel

Modeling of Unsteady Heat Transfer by Impact Between Gas Particles and a Cold Wall in a Spherical Combustion Vessel

T. Kasraoui K. Joulain R. Bertossi M. Bellenoue B. Boust J. Sotton

DRII, IPSA, Ivry-sur-Seine, France

Institut Pprime, département Fluide, Thermique et Combustion, ENSIP, Poitiers, France

Institut Pprime, département Fluide, Thermique et Combustion, ISAE-ENSMA, Futuroscope Chasseneuil, France

Page: 
44-54
|
DOI: 
https://doi.org/10.2495/CMEM-V5-N1-44-54
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

To evaluate the wall heat losses in combustion vessel, an alternative to existing macroscopic models of heat transfer is suggested. This study aims to provide a physical approach for wall heat transfer based on kinetic theory of gases to describe the conduction phenomena between gas particles and the cold wall in short scales. The model mentioned is implemented in a code simulating combustion in a constant volume spherical chamber.

Keywords: 

ballistic regime, combustion, kinetic theory of gases, unsteady heat transfer

  References

[1] Boust, B., Etude expérimentale et modélisation des pertes thermiques pariétales lors de l’interaction flamme-paroi instationnaire. Thèse de doctorat de l’université de Poitiers, 2006.

[2] Huang, W.M., Vosen, S.R. & Greif, R., Heat transfer during laminar flame quenching: effect of fuels. Proceeding of the 21st Symposium on Combustion, pp. 1853–1860, 1986.

[3] Popp, P. & Baum, M., Analysis of wall heat flux reaction mechanisms and unburnt hydrocarbons during the head-on quenching of a laminar methane flame. Combustion and Flame, 108, pp. 327–348, 1997. http://dx.doi.org/10.1016/S0010-2180(96)00144-7

[4] Potter, Jr., A.E. & Berlad, A.L., A thermal equation for flame quenching, NASA TN 3398, 1955.

[5] Boust, B., Sotton, J., Labuda, S.A. & Bellenoue, M., A thermal formulation for singlewall quenching of transient laminar flames. Combustion and Flame, 149, pp. 286–294, 2007. http://dx.doi.org/10.1016/j.combustflame.2006.12.019

[6] Fergusson, C.R. & Keck, J.C., On laminar flame quenching and its applications to spark ignition engines. Combustion and Flame, 28, pp. 197–205, 1977. http://dx.doi.org/10.1016/0010-2180(77)90025-6

[7] Vosen, S.R., Greif, R. & Westbrook, C.K., Unsteady heat transfer during laminar flame quenching, Proceeding of the 20th Symposium on Combustion, pp. 75–83, 1984.

[8] Sotton, J., Boust, B., Labuda, S.A. & Bellenoue, M., Head-on quenching of transient laminar flame: heat flux and quenching distance measurements. Combustion Science and Technology, 177, pp. 1305–1322, 2005. http://dx.doi.org/10.1080/00102200590950485

[9] Nusselt W., Der wärmeübergang in der Verbrennungskraftmaschine, V.D.I. Forschungsheft, p. 264, 1923.

[10] Woschni, G., A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine, SAE Technical Paper 670931, 1967.

[11] Han, Z. & Reitz, R.D., A temperature wall function formulation for variable-density turbulent flows with application to engine heat transfer modeling. International Journal of Heat and Mass Transfer, 40, pp. 613–625, 1997. http://dx.doi.org/10.1016/0017-9310(96)00117-2

[12] Rivère, J.P. & Mechkor, M., Modélisation des échanges thermiques sur la paroi de la chambre de combustion, Rapport RENAULT, 2005.

[13] Carminati, R., Transport en milieux dilués (chapter 2). Micro et nanothermique, ed S. Volz, Editions du CNRS: Paris, France, pp. 34–35, 2007.

[14] Metghalchi, M. & Keck, J.C., Laminar burning velocity of propane-air mixtures at high temperature and pressure. Combustion and Flame, 48, pp. 191–210, 1980. http://dx.doi.org/10.1016/0010-2180(82)90127-4