Mach’s Principle is Equivalent to Newton’s First Axiom (A Survey)

Mach’s Principle is Equivalent to Newton’s First Axiom (A Survey)

T.H. Moulden

The University of Tennessee Space Institute, USA

Page: 
369-379
|
DOI: 
https://doi.org/10.2495/CMEM-V4-N4-369-379
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The following remarks outline the structure of the Newtonian Mach’s principle and its implications for fluid motion and turbulence. This principle can only be understood as part of classical thermomechanics on a global scale and is directly related to both the first axiom of Newtonian mechanics and to global total energy covariance.

Keywords: 

A Mach’s principle, covariant Newtonian-Clausius thermomechanics, implications for fluid turbulence

  References

[1] Huygens, C., De Motu Corporum, 1703.

[2] Penrose, R., Newton, Quantum Theory and Reality. In 300 Years of Gravitation, eds. S. Hawking & W. Israel, Cambridge University Press, pp. 17–49, 1987.

[3] Cohen, I.B. & Whitman, A., Isaac Newton: The Principia, University of California Press, 1999.

[4] Herivel, J., The Background to Newton’s ‘Principia, Oxford University Press, 1965.

[5] Chang, H., Inventing Temperature, Oxford University Press, 2004.

http://dx.doi.org/10.1093/0195171276.001.0001

[6] Friedman, M., Foundations of Space-Time Theories, Princeton University Press, 1983.

[7] Mach, E., The Science of Mechanics, (First German edition 1883) the first English edition, 1895. Fourth German Edition 1901, Second English edition 1902. These English editions were translated by Thomas J. McCormack. Reissued by Barnes and Noble, 2009.

[8] Bondi, H., Cosmology, Cambridge University Press, 1952.

[9] Mach, E., History and Root of the Principle of Conservation of Energy, (1872). Translated by Jourdain, P. E. B., Open Court, 1911.

[10] Berkeley, G., De Motu, 1721. (see Jesseph, D. M: George Berkeley: «De Motu” and “The Analyst”, Kluwer, 1992).

[11] Sklar, L., Philosophy and the Foundations of Dynamics, Cambridge University Press, 2013.

[12] Bradley, J., Mach’s Philosophy of Science, The Athlone Press, 1971.

[13] Brown, H.R., Physical Relativity, Oxford University Press, 2005.

[14] Penrose, R., The Road to Reality, Vintage, 2007.

[15] Moulden, T.H., The principle of Mach in Newtonian Continuum Thermomechanics. International Journal of Pure and Applied Mathematics, 91, pp. 483–493, 2014. http://dx.doi.org/10.12732/ijpam.v91i4.5

[16] Hubble, E.P., A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae. Proceeding of the National Academy of Sciences of the USA, 15, pp. 168–173, 1929. http://dx.doi.org/10.1073/pnas.15.3.168

[17] Clausius, R., Ueber verschiedene fur die Anwendung bequeme formen der Hauptgleichungen der mechanischen Warmtheorie. Annalen der Physik, 125, pp. 353–400, 1865. http://dx.doi.org/10.1002/andp.18652010702

[18] Green, A.E. & Rivlin, R.S., On Cauchy’s Equations of Motion. JAMP, 15, pp. 290–292, 1964. http://dx.doi.org/10.1007/BF01607019

[19] Moulden, T.H., On the First Axiom of Newtonian Continuum Mechanics. International Journal of Pure and Applied Mathematics, 77, pp. 199–212, 2012.

[20] Raine, D.J., The Isotropic Universe, Hilger, 1981.

[21] Moulden, T.H., Mach’s Principle for Fluid Turbulence. Proceeding 30* ISTS Conference, Kobe, Japan, 2015.

[22] Reynolds, O., On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion. Philosophical Transaction of the Royal Society of London A, 186, pp. 123–164, 1883. http://dx.doi.org/10.1098/rsta.1895.0004

[23] Barbour, J., The End of Time, Oxford University Press, 1999.

[24] Moulden, T.H., Turbulence: the Covariance Structure. Proceeding AFM X, eds C.A. Brabbia, S. Hernandez & M. Rahman, WIT Press, 2014. http://dx.doi.org/10.2495/afm140151

[25] Taylor, G.I., The Conditions Necessary for Discontinuous Motion in Gases. Proceeding of the Royal Society of London. Series A, A84, pp. 371–377, 1910. http://dx.doi.org/10.1098/rspa.1910.0081

[26] Rayleigh, L., Aerial Plane Waves of Finite Amplitude. Proceeding of the Royal of Soc. A84, pp. 247–284, 1910. http://dx.doi.org/10.1098/rspa.1910.0075

[27] Zel’dovich, Y.B., Hydrodynamics of the Universe. Annual Review of Fluid Mechanics, 9, pp. 215–228, 1977. http://dx.doi.org/10.1146/annurev.fl.09.010177.001243