Construction précise de bases d’amers géo-référencés pour la localisation d’un véhicule en milieu urbain

Construction précise de bases d’amers géo-référencés pour la localisation d’un véhicule en milieu urbain

Dorra Larnaout Vincent Gay-Bellile  Steve Bourgeois  Michel Dhome 

CEA, LIST, LVIC Point Courrier 173, F-91191, Gif-Sur-Yvette, France

Institut Pascal, UMR 6602 Université Blaise Pascal/CNRS/IFMA

Corresponding Author Email: 
dorra.larnaout@gmail.com
Page: 
147-167
|
DOI: 
https://doi.org/10.3166/TS.32.147-167
Received: 
5 December 2014
| |
Accepted: 
2 June 2015
| | Citation

OPEN ACCESS

Abstract: 

To provide high quality Augmented Reality AR service, accurate 6DoF localization is required. To ensure such accuracy, most of current vision-based solutions rely on an offline large scale modeling of the environment. While existing solutions require expensive equipments and/or a prohibitive computation time, we propose in this paper a complete framework that automatically builds an accurate city scale database of landmarks using only a standard camera, a GPS and GIS Geographic Information System.

RÉSUMÉ

L’aide à la navigation par Réalité Augmentée RA nécessite une estimation précise des six degrés de liberté relative au déplacement de la caméra. Pour ceci, les solutions de localisation par vision passent souvent par une étape de modélisation hors ligne des grands environnements. Tandis que les solutions existantes exigent des matériels coûteux et/ou un temps d’exécution très important, nous proposons dans cet article un processus qui crée automatiquement une modélisation précise de l’environnement en utilisant uniquement une caméra standard, un GPS bas coût et des modèles SIG (Système d’Information Géographique) disponibles gratuitement.

Keywords: 

monocular SLAM, GPS, GIS models

MOTS-CLÉS

SLAM monoculaire, GPS, modèles SIG

1. Introduction
2. Travaux Connexes
3. Positionnement
4. Solution Proposée
5. Résultats
6. Conclusion
  References

Agarwal S., Furukawa Y., Snavely N., Simon I., Curless B., Seitz S. M. et al. (2011). Building rome in a day. Commun. ACM, vol. 54, no 10, p. 105-112.

Arth C., Wagner D., Klopschitz M., Irschara A., Schmalstieg D. (2009). Wide area localization on mobile phones. In Ieee international symposium on mixed and augmented reality, p. 73-82.

Frahm J. M., Fite-Georgel P., Gallup D., Johnson T., Raguram R., Wu C. et al. (2010). Building rome on a cloudless day. In Ieee european conference on computer vision, p. 368-381.

Gay-Bellile V., Lothe P., Bourgeois S., Royer E., Naudet-Collette S. (2010). Augmented reality in large environments: Application to aided navigation in urban context. In Ieee international symposium on mixed and augmented reality, p. 225-226.

Kaminsky R., Snavely N., Seitz S., Szeliski R. (2009). Alignment of 3d point clouds to overhead images. In Ieee conference on computer vision and pattern recognition, p. 63 - 70.

Lanaout D., Gay-Bellile V., Bourgeois S., Dhome M. (2013). Vehicle 6-dof localization based on slam constrained by gps and digital elevation model information. In Ieee international conference on image processing, p. 2504-2508.

Lhuillier M. (2012). Incremental fusion of structure-from-motion and gps using constrained bundle adjustments. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no 12, p. 2489-2495.

Li Y., Snavely N., Huttenlocher D., Fua P. (2012). Worldwide pose estimation using 3d point clouds. In Ieee european conference on computer vision, p. 15-29.

Lothe P., Bourgeois S., Dekeyser F., Royer E., Dhome M. (2009). Towards geographical referencing of monocular slam reconstruction using 3d city models: Application to real-time accurate vision-based localization. In Ieee conference on computer vision and pattern recognition, p. 2882-2889.

Marquardt D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial & Applied Mathematics, vol. 11, p. 431-441.

Middelberg S., Sattler T., Untzelmann O., Kobbelt L. (2014). Scalable 6-dof localization on mobile devices. In Ieee european conference on computer vision, p. 268-283.

Mouragnon E., Lhuillier M., Dhome M., Dekeyser F., Sayd P. (2006). Real time localization and 3d reconstruction. In Ieee conference on computer vision and pattern recognition, p. 363-370.

Strecha C., Pylvänäinen T., Fua P. (2010). Dynamic and scalable large scale image reconstruction. In Ieee conference on computer vision and pattern recognition, p. 406 - 413.

Tamaazousti M., Gay-Bellile V., Naudet-Collette S., Bourgeois S., Dhome M. (2011). Nonlinear refinement of structure from motion reconstruction by taking advantage of a partial knowledge of the environment. In Ieee conference on computer vision and pattern recognition, p. 3073-3080.

Wang C., Wilson K., Snavely N. (2013). Accurate georegistration of point clouds using geographic data. In Ieee conference 3d vision, p. 33-40.

Zamir A. R., Shah M. (2010). Accurate image localization based on google maps street view. In Ieee european conference on computer vision, p. 255-268.