Cortical Bone Screws Constructive Characteristics – A Comparative Study

Cortical Bone Screws Constructive Characteristics – A Comparative Study

Andrea T. Lugas Domenico C. Aloj Daniele Santoro Vittoria Civilini Simone Borrelli Cristina Bignardi

Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy

PolitoBIOMed Lab, Politecnico di Torino, 10129 Turin, Italy

Orthopedics and Traumatology Complex Structure AslVC, Sant’Andrea Hospital, 13100, Vercelli, Italy

Orthopedics and Traumatology Complex Operating Unit, I University Orthopedic Clinic, 10126 Turin, Italy

Page: 
283-295
|
DOI: 
https://doi.org/10.2495/CMEM-V9-N4-283-295
Received: 
N/A
|
Revised: 
N/A
|
Accepted: 
N/A
|
Available online: 
N/A
| Citation

© 2021 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

OPEN ACCESS

Abstract: 

Osteosynthesis is a surgical technique for the treatment of skeletal fractures through the implant of mechanical devices, such as plates and screws, in order to stabilize and fix the injured skeletal segment. It is preferred to the conservative treatment when the fracture requires immediate surgical correction or when, blocking the joints, degenerative changes could occur. Bone screws have different shapes and sizes depending on the intended use. In this study, six types of cortical bone screws were tested to determine the torque transmitted to the bone during the insertion. One Ti6Al4V tapered (Ø 6 mm) and five AISI 316L stainless steel – two straight (Ø 4 and 6 mm) and three tapered (Ø 4, 5, and 6 mm) – screws were used during the tests. Screws have been screwed into Sawbones (Sawbones® Pacific Research Laboratories, Inc., Vashon, USA) solid foam-type cylinders (external diameter 30 mm and thickness 3.5 mm) simulating the cortical bone diaphysis. Each of the 26 screws tested was inserted in a Sawbone cylinder five times, in five previously drawn equally spaced points, without any pilot holes. The experiment design was based on the ASTM standard for medical bone screws; two experi- enced orthopedic surgeons performed the insertions and removals of the screws using a hand-drill at 1 rev/s, aided by a metronome, and the torque was measured with a torsiometer throughout the tests. The mean and maximum torque resulted to be higher for larger diameter screws. Considering the same diameter, tapered screws showed a higher torque required for the extraction, which indicates stronger retention. However, in some cases, the Sawbones cylinder was fractured during the insertion of screws with a 6 mm diameter. Therefore, the use of medium-size tapered screws might be the most advisable compromise.

Keywords: 

Cortical bone screws, Diameter, Extraction torque, Insertion torque, Shape

  References

[1] Erani, P. & Baleani, M., Achievable accuracy of hip screw holding power estimation by insertion torque measurement. Clinical Biomechanics, 52, pp. 57–65, 2018. https://doi. org/10.1016/j.clinbiomech.2018.01.010

[2] Basmajian, H.G., Liu, J.N., Scudday, T., Campbell, S.T. & Amin, N.H., Kirschner wire prepared pilot holes improve screw pullout strength in synthetic osteoporotic-type bone. Journal of Clinical Orthopaedics and Trauma, 11, pp. 100–104, 2020. https:// doi.org/10.1016/j.jcot.2019.08.015

[3] Tepedino, M., Masedu, F. & Chimenti, C., Comparative evaluation of insertion torque and mechanical stability for self-tapping and self-drilling orthodontic miniscrews – an in vitro study. Head & Face Medicine, 13(1), pp. 10, 2017. https://doi.org/10.1186/ s13005-017-0143-3

[4] Ab-Lazid, R., Perilli, E., Ryan, M.K., Costi, J.J. & Reynolds, K.J., Does cancellous screw insertion torque depend on bone mineral density and/or microarchitecture. Journal of Biomechanics, 47(2), pp. 347–353, 2014. https://doi.org/10.1016/j. jbiomech.2013.11.030

[5] Tsuji, M., Crookshank, M., Olsen, M., Schemitsch, E.H. & Zdero, R., The biomechani- cal effect of artificial and human bone density on stopping and stripping torque during screw insertion. Journal of the Mechanical Behavior of Biomedical Materials, 22, pp. 146–156, 2013. https://doi.org/10.1016/j.jmbbm.2013.03.006

[6] Kunkel, K.A.R., Suber, J.T., Gerard, P.D. & Kowaleski, M.P., Effect of pilot hole diam- eter and tapping on insertion torque and axial pullout strength of 4.0-mm cancellous bone screws. American Journal of Veterinary Research, 72(12), pp. 1660–1665, 2011. https://doi.org/10.2460/ajvr.72.12.1660

[7] Koistinen, A., Santavirta, S.S., Kröger, H. & Lappalainen, R., Effect of bone mineral density and amorphous diamond coatings on insertion torque of bone screws. Biomate- rials, 26(28), pp. 5687–5694, 2005. https://doi.org/10.1016/j.biomaterials.2005.02.003

[8] Addevico, F., Morandi, M., Scaglione, M. & Solitro, G.F., Screw insertion torque as parameter to judge the fixation. Assessment of torque and pull-out strength in differ- ent bone densities and screw-pitches. Clinical Biomechanics, 72(December 2019), pp. 130–135, 2020. https://doi.org/10.1016/j.clinbiomech.2019.12.004

[9] McAndrew, C.M., Agarwalla, A., Abraham, A.C., Feuchtbaum, E., Ricci, W.M. & Tang, S.Y., Local bone quality measurements correlates with maximum screw torque at the femoral diaphysis. Clinical Biomechanics, 52, pp. 95–99, 2018. https://doi. org/10.1016/j.clinbiomech.2018.01.016

[10] Sunagawa-Kojima, H., Ohtani, J., Kaku, M., Tsubamoto, N., Ishikawa, E., Tanne, K. & Tanimoto, K., Histomorphometric evaluation of cortical bone surrounding mini-screw: Why is the insertion torque critical for primary stability? Biomedical Research, 29(14), pp. 3028–3033, 2018. https://doi.org/10.4066/biomedicalresearch.29-18-892

[11] Fletcher, J.W.A., Ehrhardt, B., MacLeod, A., Whitehouse, M.R., Gill, H. & Preatoni, E., Non-locking screw insertion: No benefit seen if tightness exceeds 80% of the maximum torque. Clinical Biomechanics, 70(July), pp. 40–45, 2019. https://doi.org/10.1016/j. clinbiomech.2019.07.009

[12] Togni, F., Baras, F., Ribas, M.D.O. & Taha, M.O., Histomorphometric analysis of  bone tissue repair in rabbits after insertion of titanium screws under different torque. Acta Cirurgica Brasileira, 26(4), pp. 261–266, 2011. https://doi.org/10.1590/s0102- 86502011000400003

[13] Reynolds, K.J., Cleek, T.M., Mohtar, A.A. & Hearn, T.C., Predicting cancellous bone failure during screw insertion. Journal of Biomechanics, 46(6), pp. 1207–1210, 2013. https://doi.org/10.1016/j.jbiomech.2013.01.021

[14] Weidling, M., Oefner, C., Schoenfelder, S. & Heyde, C.E., A novel parameter for the prediction of pedicle screw fixation in cancellous bone - A biomechanical study on synthetic foam. Medical Engineering & Physics, 79, pp. 44–51, 2020. https://doi. org/10.1016/j.medengphy.2020.03.001

[15] Ab-Lazid, R., Perilli, E., Ryan, M.K., Costi, J.J. & Reynolds, K.J., Pullout strength of cancellous screws in human femoral heads depends on applied insertion torque, trabec- ular bone microarchitecture and areal bone mineral density. Journal of the Mechanical Behavior of Biomedical Materials, 40, pp. 354–361, 2014. https://doi.org/10.1016/j. jmbbm.2014.09.009

[16] Ricci, W.M., Tornetta, P., Petteys, T., Gerlach, D., Cartner, J., Walker, Z. & Russell, T.A., A comparison of screw insertion torque and pullout strength. Journal of Orthopaedic Trauma, 24(6), pp. 374–378, 2010. https://doi.org/10.1097/bot.0b013e3181c4a655

[17] Zanetti, E.M., Parametric analysis of orthopedic screws  in  relation  to  bone  den- sity. The Open Medical Informatics Journal, 3(1), pp. 19–26, 2009. https://doi. org/10.2174/1874431100903010019

[18] Zanetti, E.M. & Bignardi, C., Structural analysis of skeletal body elements: Numerical and experimental methods. In Biomechanical systems technology (edited by Cornelius T Leondes (University of California, Los Angeles, USA), World Scientific Publishing, Vol. 3, 185-225, ISBN 978-981-270-983-7, 2009.

[19] Vitale, M.C., Chiesa, M., Coltellaro, F., Bignardi, C., Celozzi, M. & Poggio, C., FEM analysis of different dental root canal-post systems in young permanent teeth. European Journal of Paediatric Dentistry, 9(3), pp. 111–117, 2008.

[20] Taylor, D., Casolari, E. & Bignardi, C., Predicting stress fractures using a probabilis- tic model of damage, repair and adaptation. Journal of Orthopaedic Research, 22, pp. 487–494, 2004. https://doi.org/10.1016/j.orthres.2003.08.022

[21] Zanetti, E. M. & Bignardi, C. Mock-up in hip arthroplasty pre-operative planning. Acta of Bioengineering and Biomechanics, 15, pp. 123–128, 2013.

[22] Zanetti, E.M., Terzini, M., Mossa, L., Bignardi, C., Costa, P., Audenino, A. L. & Vez- zoni, A., A structural numerical model for the optimization of double pelvic osteotomy in the early treatment of canine hip dysplasia. Veterinary and Comparative Orthopae- dics and Traumatology, 30(4), pp. 256–264, 2017. https://doi.org/10.3415/vcot-16-05- 0065

[23] Terzini, M., Terzini, M., Zanetti, E.M., Audenino, A.L., Putame, G., Gastaldi, L., Pas- torelli, S., Panero, E., Sard, A. & Bignardi, C., Multibody modelling of ligamentous and bony stabilizers in the human elbow. Muscle Ligaments and Tendons Journal, 7, pp. 493–502, 2017. https://doi.org/10.32098/mltj.04.2017.03

[24] Zanetti, E.M., Ciaramella, S., Calì, M., Pascoletti, G., Martorelli, M., Asero, R. & Watts, D.C., Modal analysis for implant stability assessment: Sensitivity of this methodology for different implant designs. Dental Materials, 34, pp. 1235–1245, 2018. https://doi. org/10.1016/j.dental.2018.05.016

[25] Aldieri, A., Terzini, M., Osella, G., Priola, A. M., Angeli, A., Veltri, A., Audenino, A. L. & Bignardi, C., Osteoporotic hip fracture prediction: Is T-score-based criterion enough? A hip structural analysis-based model. Journal of Biomechanical Engineering, 140(11), Article no. 111004, 2018. https://doi.org/10.1115/1.4040586

[26] Pascoletti, G., Cianetti, F., Putame, G., Terzini, M. & Zanetti, E.M., Numerical simu- lation of an intramedullary Elastic Nail: Expansion phase and load-bearing behavior. Frontiers in Bioengineering and Biotechnology, 6, p. 174, 2018. https://doi.org/10.3389/ fbioe.2018.00174

[27] Putzer, D., Nogler, M., Terzini, M., Mannara, R. & Bignardi, C., A finite element analy- sis for a new short stem concept design with spherical bone interface for hip resurfac- ing. Journal of Mechanical Science and Technology, 9(3), pp. 923–935, 2018.

[28] Calì, M., Zanetti, E.M., Oliveri, S.M., Asero, R., Ciaramella, S., Martorelli, M. & Big- nardi, C., Influence of thread shape and inclination on the biomechanical behaviour   of plateau implant systems. Dental Materials, 34(3), pp. 460–469, 2018. https://doi. org/10.1016/j.dental.2018.01.012

[29] Zanetti, E.M., Bignardi, C., Terzini, M., Putame, G. & Audenino, A.L., A multibody model for the optimization of hip arthroplasty in relation to range of movement. Aus- tralasian Medical Journal, 11(10), pp. 486–491, 2018. https://doi.org/10.21767/ amj.2018.3444

[30] Pascoletti, G., Catelani, D., Conti, P., Cianetti, F. & Zanetti, E.M., Multibody models for the analysis of a fall from height: Accident, suicide, or murder? Frontiers in Bioengi- neering and Biotechnology, 7, p. 419, 2019. https://doi.org/10.3389/fbioe.2019.00419

[31] Putame, G., Terzini, M., Bignardi, C., Beale, B., Hulse, D., Zanetti, E. & Audenino, A., Surgical treatments for canine anterior cruciate ligament rupture: Assessing functional recovery through multibody comparative analysis. Frontiers in Bioengineering and Biotechnology, 7, pp. 1–11, 2019. https://doi.org/10.3389/fbioe.2019.00180

[32] Putame, G., Pascoletti, G., Franceschini, G., Dichio, G. & Terzini, M., Prosthetic hip ROM from multibody software simulation. Proceeding of Annual International Confer- ence of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5386– 5389, 2019. https://doi.org/10.1109/embc.2019.8856993

[33] Pascoletti, G., Catelani, D., Conti, P., Cianetti, F. & Zanetti, E.M., A multibody simula- tion of a human fall: Model creation and validation. Procedia Structural Integrity, 24, pp. 337–348, 2019. https://doi.org/10.1016/j.prostr.2020.02.031

[34] Terzini, M., Aldieri, A., Rinaudo, L., Osella, G., Audenino, A.L. & Bignardi, C., Improving the hip fracture risk prediction through 2D finite element models from DXA images : Validation against 3D models. Frontiers in Bioengineering and Biotechnology, 7, 2019. https://doi.org/10.3389/fbioe.2019.00220

[35] Santoro, D., Nardi, M., Lasorella, F. & Bignardi, C., Overlapping versus “kissing” plates in Femur: A FEM study. The Open Biomedical Engineering Journal, 13, pp. 94–101, 2019. https://doi.org/10.2174/1874120701913010094

[36] Putame, G., Pascoletti, G., Terzini, M., Zanetti, E.M. & Audenino, A.L., Mechanical behavior of elastic self-locking nails for intramedullary fracture fixation: A numerical analysis of innovative nail designs. Frontiers in Bioengineering and Biotechnology, 8, pp. 1–10, 2020. https://doi.org/10.3389/fbioe.2020.00557

[37] Aldieri, A., Terzini, M., Audenino, A.L., Bignardi, C. & Morbiducci, U., Combining shape and intensity dxa-based statistical approaches for osteoporotic hip fracture risk assessment. Computers in Biology and Medicine, 127, Article no. 104093, 2020. https:// doi.org/10.1016/j.compbiomed.2020.104093

[38] Terzini, M., Aldieri, A., Nurisso, S., De Nisco, G. & Bignardi, C. Finite Element Mod- eling Application in Forensic Practice: A Periprosthetic Femoral Fracture Case Study. Frontiers in Bioengineering and Biotechnology, 8, p. 619, 2020. https://doi.org/10.3389/ fbioe.2020.00619

[39] Terzini, M., Di Pietro, A., Aprato, A., Artiaco, S., Massè, A. & Bignardi, C., Are sup- rapectineal quadrilateral surface buttressing plates performances superior to traditional fixation? A finite element analysis. Applied Sciences, 11(2), p. 858, 2021. https://doi. org/10.3390/app11020858

[40] Bresciano, M., Schierano, G., Manzella, C., Screti, A., Bignardi, C. & Preti, G., Retention of luting agents on implant abutments of different height and taper. Clini- cal Oral Implant Research, 16, pp. 594–598, 2005. https://doi.org/10.1111/j.1600- 0501.2005.01159.x

[41] Zanetti, E.M., Crupi, V., Bignardi, C. & Calderale, P.M., Radiograph-based femur  morphing method. Medical & Biological Engineering & Computing, 43, pp. 181–188, 2005. https://doi.org/10.1007/bf02345952

[42] Menicucci, G., Ceruti, P., Barabino, E., Screti, A., Bignardi, C. & Preti, G., A prelimi- nary in vivo trial of load transfer in mandibular implant-retained overdentures anchored in 2 different ways: Allowing and counteracting free rotation. The International Journal of Prosthodontics, 19(6), pp. 574–576, 2006.

[43] Brianza, S.Z.M., D’amelio, P., Pugno, N., Delise, M., Bignardi, C. & Isaia, G., Allome- tric scaling and biomechanical behavior of the bone tissue: An experimental intraspecific investigation. Bone, 40, pp. 1635–1642, 2007. https://doi.org/10.1016/j.bone.2007.02.013

[44] Brianza, S.Z.M., D’Amelio, P., Cerrato, M., Bignardi, C., Grimaldi, A., Pescarmona, G.P. & Isaia, G., Dedicated image analysis software tool for the evaluation of the resorption activity of cultured osteoclasts. Journal of Imaging Science and Technol- ogy, 52(3), 030508-030508-9, 2008. https://doi.org/10.2352/j.imagingsci.technol. (2008)52:3(030508)

[45] D’Amelio, P., Rossi, P., Isaia, G., Lollino, N., Castoldi, F., Girardo, M., Dettoni, F., Sat- tin, F., Delise, M. & Bignardi, C., Bone mineral density and singh index predict bone mechanical properties of human femur. Connective Tissue Research, 49, pp. 99–104, 2008. https://doi.org/10.1080/03008200801913940

[46] Zanetti, E.M., Bignardi, C. & Audenino, A.L., Human pelvis loading rig for static and dynamic stress analysis. Acta of Bioengineering and Biomechanics, 14, pp. 61–66, 2012.

[47] Manzella, C., Burello, V., Bignardi, C., Carossa, S. & Schierano, G., A method to improve passive fit of frameworks on implant-supported prostheses: An in vivo study. The International Journal of Prosthodontics, 26(6), pp. 577–579, 2013. https://doi. org/10.11607/ijp.3326

[48] Boero Baroncelli, A., Reif, U., Bignardi, C. & Peirone, B., Effect of screw insertion torque on push-out and cantilever bending properties of five different angle-stable systems. Veterinary Surgery, 42(3), pp. 308–315, 2013. https://doi.org/10.1111/j.1532- 950x.2013.01088.x

[49] Marmotti, A., Bruzzone, M., Bonasia, D.E., Castoldi, F., Von Degerfeld, M.M., Bignardi, C., Mattia, S., Maiello, A., Rossi, R. & Peretti, G.M., Autologous cartilage fragments in a composite scaffold for one stage osteochondral repair in a goat model. European Cells and Materials, 26, pp. 15–32, 2013. https://doi.org/10.22203/ecm.v026a02

[50] Massai, D., Cerino, G., Gallo, D., Pennella, F., Deriu, M.A., Rodriguez, A., Montevec- chi, F.M., Bignardi, C., Audenino, A. & Morbiducci, U., Bioreactors as engineering support to treat cardiac muscle and vascular disease. Journal of Healthcare Engineer- ing, 4(3), pp.·329–370, 2013. https://doi.org/10.1260/2040-2295.4.3.329

[51] Logozzo, S., Kilpelä, A., Mäkynen, A., Zanetti, E.M. & Franceschini, G., Recent advances in dental optics - Part II: Experimental tests for a new intraoral scanner. Optics and Lasers in Engineering, 54, pp. 187–196, 2014. https://doi.org/10.1016/j. optlaseng.2013.07.024

[52] Aimetti, M., Mariani, G.M., Ferrarotti, F., Ercoli, E., Audagna, M., Bignardi, C. & Romano, F., Osseous resective surgery with and without fibre retention technique in the treatment of shallow intrabony defects: A split-mouth randomized clinical trial. Journal of Clinical Periodontology, 42(2), pp. 182–189, 2015. https://doi.org/10.1111/ jcpe.12343

[53] Manzella, C., Bignardi, C., Burello, V., Carossa, S. & Schierano, G., Method to improve passive fit of frameworks on implant-supported prostheses: An in vitro study. The Journal of Prosthetic Dentistry, 116(1), pp. 52–58, 2016. https://doi.org/10.1016/j.pros- dent.2016.01.006

[54] Falvo D’Urso Labate, G., Baino, F., Terzini, M., Audenino, A., Vitale Brovarone, C., Segers, P., Quarto, R. & Catapano, G., Bone structural similarity score: A multipara- metric tool to match properties of biomimetic bone substitutes with their target tissues. Journal of Applied Biomaterials & Functional Materials, 14, pp. e277–e289, 2016. https://doi.org/10.5301/jabfm.5000283

[55] Zanetti, E.M., Aldieri, A., Terzini, M., Calì, M., Franceschini, G. & Bignardi, C., Additively manufactured custom load-bearing implantable devices: Grounds for cautions. Australasian Medical Journal, 10(8), pp. 694–700, 2017. https://doi.org/10.21767/ amj.2017.3093

[56] Manavella, V., Romano, F., Garrone, F., Terzini, M., Bignardi, C. & Aimetti, M., A novel image processing technique for 3D volumetric analysis of severely resorbed alveolar sockets with CBCT. Minerva Stomatologica., 66(3), pp. 81–90, 2017.

[57] Bignardi, C., Terzini, M., Audenino, A.L., Massai, D., Aprato, A., Massè, A., Costa, P. & Zanetti, E.M., Pelvic manipulator for fractures reduction. Journal of Mechanical Science and Technology, 9, pp. 570–580, 2018.

[58] Bignardi, C., Zanetti, E.M., Terzini, M., Ciccola, A.R., Schierano, G. & Audenino, A.L., Reliability, learnability and efficiency of two tools for cement crowns retrieval in dentistry. The Open Biomedical Engineering Journal, 12(1), pp. 27–35, 2018. https://doi.org/10.2174/1874120701812010027

[59] Bellia, E., Boggione, L., Terzini, M., Manzella, C. & Menicucci, G., Immediate loading of mandibular overdentures retained by two mini-implants: A case series preliminary report. The International Journal of Prosthodontics, 31, pp. 558–564, 2018. https://doi.org/10.11607/ijp.5589

[60] Aimetti, M., Manavella, V., Corano, L., Ercoli, E., Bignardi, C. & Romano, F. Three- dimensional analysis of bone remodeling following ridge augmentation of compromised extraction sockets in periodontitis patients: A randomized controlled study. Clinical Oral Implants Research, 29, pp. 202–214, 2018. https://doi.org/10.1111/clr.13099

[61] Manavella, V., Romano, F., Corano, L., Bignardi, C. & Aimetti, M., Three-dimensional volumetric changes in severely resorbed alveolar sockets after ridge augmentation with bovine-derived xenograft and resorbable barrier: A preliminary study on CBCT imaging. Int J Oral Maxillofac Implants, 33(2), pp. 373–382, 2018. https://doi.org/10.11607/ jomi.5684

[62] Zanetti, E.M., Pascoletti, G., Calì, M., Bignardi, C. & Franceschini, G., Clinical assessment of dental implant stability during follow-up: What is actually measured, and per- spectives. Biosensors (Basel), 8(3), pii: E68, 2018. https://doi.org/10.3390/bios8030068

[63] Pascoletti, G., Dichio, G., Marmotti, A., Baroncelli, A.B., Costa, P., Lugas, A.T. & Serino, G., A novel technique for testing osteointegration in load-bearing conditions. WIT Transactions on Engineering Sciences, 124, pp. 187–194, 2019. https://doi. org/10.2495/mc190181

[64] Corapi, D., Morettini, G., Pascoletti, G. & Zitelli, C., Characterization of a polylactic acid (PLA) produced by Fused Deposition Modeling (FDM) technology. Procedia Structural Integrity, 24, pp. 289–295, 2019. https://doi.org/10.1016/j.prostr.2020.02.026

[65] Giorgi, M., Sotiriou, V., Fanchini, N., Conigliaro, S., Bignardi, C., Nowlan, N.C. & Dall’Ara, E., Prenatal growth map of the mouse knee joint by means of deformable registration technique. PLoS One, 14(1), p. e0197947, 2019. https://doi.org/10.1371/ journal.pone.0197947

[66] Panero, E., Gastaldi, L., Terzini, M., Bignardi, C., Sard, A. & Pastorelli, S., Biome- chanical role and motion contribution of ligaments and bony constraints in the elbow stability: A preliminary study. Bioengineering, 6(3), pp. 68–79, 2019. https://doi. org/10.3390/bioengineering6030068

[67] Pascoletti, G., Pressanto, M.C., Putame, G., Terzini, M., Franceschini, G. & Zanetti, E.M., Data from cyclic tensile tests on sutured organs to evaluate creep behaviour, dis- traction, and residual thread strength. Data in Brief, 30, p. 105644, 2020. https://doi. org/10.1016/j.dib.2020.105644

[68] Fragomeni, G., Terzini, M., Comite, A. & Catapano, G., The maximal pore size of hydro- phobic microporous membranes does not fully characterize the resistance to plasma breakthrough of membrane devices for extracorporeal blood oxygenation. Frontiers in Bio- engineering and Biotechnology, 7, pp. 1–9, 2020. https://doi.org/10.3389/fbioe.2019.00461

[69] Calì, M., Pascoletti, G., Gaeta, M., Milazzo, G. & Ambu, R., A new generation of bio- composite thermoplastic filaments for a more sustainable design of parts manufactured by FDM. Applied Sciences, 10(17), p. 5852, 2020. https://doi.org/10.3390/app10175852

[70] Calì, M., Pascoletti, G., Gaeta, M., Milazzo, G. & Ambu, R., New filaments with natural fillers for FDM 3D printing and their applications in biomedical field. Procedia Manufacturing, 51, pp. 698–703, 2020. https://doi.org/10.1016/j.promfg.2020.10.098

[71] Dichio, G., Calì, M., Terzini, M., Putame, G., Zanetti, E.M., Costa, P. & Audenino, A.L., Engineering and manufacturing of a dynamizable fracture fixation device system. Applied Sciences, 10(19), p. 6844, 2020. https://doi.org/10.3390/app10196844

[72] Lugas, A.T., Terzini, M., Zanetti, E.M., Schierano, G., Manzella, C., Baldi, D., Big- nardi, C. & Audenino, A.L., In vitro impact testing to simulate implant-supported pros- thesis retrievability in clinical practice: Influence of cement and abutment geometry. Materials (Basel), 13(7), p. 1749, 2020. https://doi.org/10.3390/ma13071749

[73] Lugas, A.T., Terzini, M., Zanetti, E.M., Schierano, G., Manzella, C., Baldi, D., Big- nardi, C. & Audenino, A.L., In vitro simulation of dental implant bridges removal: Influence of luting agent and abutments geometry on retrievability. Materials (Basel), 13(12), p. 2747, 2020. https://doi.org/10.3390/ma13122797

[74] Pascoletti, G., Pressanto, M.C., Putame, G., Terzini, M., Audenino, A.L. & Zanetti, E.M., On-site testing of sutured organs: An experimental set up to cyclically tighten sutures. Journal of the Mechanical Behavior of Biomedical Materials, 109, p. 103803, 2020. https://doi.org/10.1016/j.jmbbm.2020.103803

[75] Pascoletti, G., Pressanto, M.C., Putame, G., Terzini, M., Franceschini, G. & Zanetti, E.M., Design of a loading system for cyclic test on sutured organs. MethodsX, 7(7), p. 100988, 2020. https://doi.org/10.1016/j.mex.2020.100988

[76] Peluccio, M.S., Bignardi, C., Lombardo, S., Montevecchi, F.M. & Carossa, S., Compa- rative study of nanomechanical properties of cements used in teeth restoration. Journal of Physics: Condensed Matter, 19, p. 395003, 2007. https://doi.org/10.1088/0953- 8984/19/39/395003

[77] Bhushan, B., Galasso, B., Bignardi, C., Nguyen, C.V., Dai, L. & Qu, L., Adhesion, friction and wear on nanoscale of MWNT Tips and SWNT and MWNT arrays. Nanotech- nology, 19, p. 125702, 2008. https://doi.org/10.1088/0957-4484/19/12/125702

[78] Bignardi, C., Petraroli, M. & Pugno, N.M., Nanoindentation on Conch Shells of Gas- tropoda and Bivalvia Molluscs reveal anisotropic evolution against external attacks. Journal of Nanoscience and Nanotechnology, 10(10), pp. 6453–6460, 2010. https://doi. org/10.1166/jnn.2010.2626

[79] Zanetti, E.M., Perrini, M., Bignardi, C. & Audenino, A.L., Bladder tissue passive response to monotonic and cyclic loading. Biorheology, 49, pp. 49–63, 2012. https:// doi.org/10.3233/bir-2012-0604

[80] Canavese, G., Stassi, S., Stralla, M., Bignardi, C. & Pirri, C.F., Stretchable and confor- mable metal-polymer piezoresistive hybrid system. Sensors and Actuators A: Physical, 186(1), pp. 191–197, 2012. https://doi.org/10.1016/j.sna.2012.01.037

[81] Zanetti, E.M., Bignardi, C., Franceschini, G. & Audenino, A.L., Amateur football pitches: Mechanical properties of the natural ground and of different artificial turf infills and their biomechanical implications. Journal of Sports Sciences, 31(7), pp. 767–778, 2013. https://doi.org/10.1080/02640414.2012.750005

[82] Terzini, M., Bignardi, C., Castagnoli, C., Cambieri, I., Zanetti, E.M. & Audenino, A.L., Ex vivo dermis mechanical behavior in relation to decellularization treatment length. The Open Biomedical Engineering Journal, 10, pp. 34–42, 2016. https://doi. org/10.2174/1874120701610010034

[83] Terzini, M., Bignardi, C., Castagnoli, C., Cambieri, I., Zanetti, E.M. & Audenino, A.L., Dermis mechanical behaviour after different cell removal treatments. Medical Engineering & Physics, 38, pp. 862–869, 2016. https://doi.org/10.1016/j.meden- gphy.2016.02.012

[84] Aldieri, A., Terzini, M., Bignardi, C., Zanetti, E.M. & Audenino, A.L., Implementation and validation of constitutive relations for human dermis mechanical response. Medi- cal & Biological Engineering & Computing, 56(11), pp. 2083–2093, 2018. https://doi. org/10.1007/s11517-018-1843-y

[85] O’Neill, M., Mala, R., Cafiso, D., Bignardi, C. & Taylor, D., Repair and remodelling in the shells of the limpet Patella vulgata. Journal of Royal Society Interface, 15(145), pii. 20180299, 2018. https://doi.org/10.1098/rsif.2018.0299

[86] Terzini, M., Aldieri, A., Zanetti, E.M., Massai, D., Audenino, A.L. & Bignardi, C., Native human dermis versus human acellular dermal matrix: A comparison of biaxial mechanical properties. Australasian Medical Journal, 11(8), pp. 434–442, 2018. https://doi.org/10.21767/amj.2018.3487

[87] Zanetti, E.M., Serino, G., Audenino, A.L. & Bignardi, C., Artificial turf pitches and synthetic grass: Macro and nano friction properties. International Journal of Mechanical Engineering and Technology, 9(13), pp. 832–839, 2018.

[88] Fiume, E., Serino, G., Bignardi, C., Verné, E. & Baino, F., Bread-derived bioactive porous scaffolds: An innovative and sustainable approach to bone tissue engineering. Molecules, 24, p. 2954, 2019. https://doi.org/10.3390/molecules24162954

[89] Pascoletti, G., Di Nardo, M., Fragomeni, G., Barbato, V., Capriglione, T., Gualtieri, R., Talevi, R., Catapano, G. & Zanetti, E.M., Dynamic characterization of the biome- chanical behaviour of bovine ovarian cortical tissue and its short-term effect on ovarian tissue and follicles. Materials (Basel), 13(17), p. 3759, 2020. https://doi.org/10.3390/ ma13173759

[90] Fiume, E., Serino, G., Bignardi, C., Verné, E. & Baino, F., Sintering behavior of a six- oxide silicate bioactive glass for scaffold manufacturing. Applied Sciences, 10, p. 8279, 2020. https://doi.org/10.3390/app10228279

[91] Serino, G., Gusmini, M., Audenino, A.L., Bergamasco, G., Ieropoli, O. & Bignardi, C., Multiscale characterization of isotropic pyrolytic carbon used for mechanical heart valve production. Processes, 9, p. 338, 2021. https://doi.org/10.3390/pr9020338

[92] Fiume, E., Schiavi, A., Orlygsson, G., Bignardi, C., Verné, E. & Baino, F., Comprehensive assessment of bioactive glass and glass-ceramic scaffold permeability: Experimental measurements by pressure wave drop, modelling and computed tomography-based analysis. Acta Biomaterialia, 119, pp. 405–418, 2021. https://doi.org/10.1016/j.act- bio.2020.10.027

[93] Putame, G., Terzini, M., Carbonaro, D., Pisani, G., Serino, G., Di Meglio, F., Castaldo, C. & Massai, D., Application of 3D printing technology for design and manufacturing of customized components for a mechanical stretching bioreactor. J. Healthc. Eng., Article ID3957931, 2019. https://doi.org/10.1155/2019/3957931

[94] Belviso, I., Romano, V., Sacco, A.M., Ricci, G., Massai, D., Cammarota, M., Catizone, A., Schiraldi, C., Nurzynska, D., Terzini, M., Aldieri, A., Serino, G., Schonauer, F., Sirico, F., Andrea, F.D., Montagnani, S., Di Meglio, F. & Castaldo, C., Decellularized human dermal matrix as a biological scaffold for cardiac repair and regeneration. Frontiers in Bioengineering and Biotechnology, 8, p. 229, 2020. https://doi.org/10.3389/ fbioe.2020.00229