© 2021 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).
OPEN ACCESS
The study of the biomechanics of the human spine is not yet developed extensively. Recent developments in this field have heightened the need for observing the spine from a comprehensive perspective to understand the complex biomechanical patterns, which underlie the kinematic and dynamic responses of this multiple-joint column. Within this frame of exigence, a joint study embracing experimental tests and multibody modelling was designed. This study provides novel insights to the segmental contribution profiles in flexion and extension, analysing different forms of sagittal-plane angles. Moreover, the validation of the multibody model contributes to defining the key aspects for a consistent spine modelling as well as it introduces the basis for simulating pathological conditions and post-orthopaedic surgical outcomes.
Lumbar spine multibody model, Lumbar spine phantom, Multi-segment spine, Sawbones lumbar spine, Spine biomechanics
[1] Logozzo, S., Kilpelä, A., Mäkynen, A., Zanetti, E.M. & Franceschini, G., Recent advances in dental optics - Part II: Experimental tests for a new intraoral scanner. Optics and Lasers in Engineering, 54, pp. 187–196, 2014. https://doi.org/10.1016/j. optlaseng.2013.07.024
[2] Putame, G., et al., Surgical treatments for canine anterior cruciate ligament rupture: Assessing functional recovery through multibody comparative analysis. Frontiers in Bioengineering and Biotechnology, 7, pp. 1–11, 2019. https://doi.org/10.3389/fbioe.2019.00180
[3] Terzini, M., Bignardi, C., Castagnoli, C., Cambieri, I., Zanetti, E.M. & Audenino, A.L., Ex vivo dermis mechanical behavior in relation to decellularization treatment length. The Open Biomedical Engineering Journal, 10, pp. 34–42, 2016. https://doi.org/10.2174/1874120701610010034
[4] Putame, G., et al., Application of 3D Printing Technology for Design and Manufacturing of Customized Components for a Mechanical Stretching Bioreactor. Journal of Healthcare Engineering, Article ID 3957931, 2019. https://doi.org/10.1155/2019/3957931
[5] Zanetti, E.M., et al., A structural numerical model for the optimization of double pelvic osteotomy in the early treatment of canine hip dysplasia. Veterinary and Comparative Orthopaedics and Traumatology, 30(4), pp. 256–264, 2017. https://doi.org/10.3415/vcot-16-05-0065
[6] Putame, G., Pascoletti, G., Terzini, M., Zanetti, E.M. & Audenino, A.L. Mechanical behavior of elastic self-locking nails for intramedullary fracture fixation: A numerical analysis of innovative nail designs. Frontiers in Bioengineering and Biotechnology, 8, pp. 1–10, 2020. https://doi.org/10.3389/fbioe.2020.00557
[7] Calì, M., Pascoletti, G., Gaeta, M., Milazzo, G. & Ambu, R., A new generation of bio- composite thermoplastic filaments for a more sustainable design of parts manufactured by FDM. Applied Sciences, 10(17), p. 5852, 2020. https://doi.org/10.3390/app10175852
[8] Corapi, D., Morettini, G., Pascoletti, G. & Zitelli, C., Characterization of a polylactic acid (PLA) produced by fused deposition modeling (FDM) technology. Procedia Structural Integrity, 24, pp. 289–295, 2019. https://doi.org/10.1016/j.prostr.2020.02.026
[9] Calì, M., Pascoletti, G., Gaeta, M., Milazzo, G. & Ambu, R., New filaments with natural fillers for FDM 3D printing and their applications in biomedical field. Procedia Manufacturing, 51, pp. 698–703, 2020. https://doi.org/10.1016/j.promfg.2020.10.098
[10] Zanetti, E.M., et al., Modal analysis for implant stability assessment: Sensitivity of this methodology for different implant designs. Dental Materials, 34(8), pp. 1235–1245, 2018. https://doi.org/10.1016/j.dental.2018.05.016
[11] Dichio, G., et al., Engineering and manufacturing of a dynamizable fracture fixation device system. Applied Sciences, 10(19), p. 6844, 2020. https://doi.org/10.3390/app10196844
[12] Lugas, A.T., et al., In vitro simulation of dental implant bridges removal: Influence of luting agent and abutments geometry on retrievability. Materials (Basel), 13, pp. 1–11, 2020. https://doi.org/10.3390/ma13122797
[13] Putame, G., Pascoletti, G., Franceschini, G., Dichio, G. & Terzini, M., Prosthetic Hip ROM from multibody software simulation. Proceeding of Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5386–5389, 2019. https://doi.org/10.1109/embc.2019.8856993
[14] Lugas, A.T., et al., In vitro impact testing to simulate implant-supported prosthesis retrievability in clinical practice : Influence of cement and abutment geometry. Materials (Basel), 13(7), p. 1749, 2020. https://doi.org/10.3390/ma13071749
[15] Terzini, M., Di Pietro, A., Aprato, A., Artiaco, S., Massè, A. & Bignardi, C., Are suprapectineal quadrilateral surface buttressing plates performances superior to traditional fixation ? A finite element analysis. Applied Sciences, 11(2), p. 858, 2021. https://doi. org/10.3390/app11020858
[16] Terzini, M., et al., Multibody modelling of ligamentous and bony stabilizers in the human elbow. Muscles, Ligaments and Tendons Journal, 7, pp. 493–502, 2017. https://doi.org/10.11138/mltj/2017.7.4.493
[17] Bignardi, C., et al., Pelvic manipulator for fractures reduction. International Journal of Radiology and Imaging Technology, 9, pp. 570–580, 2018. https://doi.org/10.23937/2572-3235.1510035
[18] Pascoletti, G., Pressanto, M.C., Putame, G., Terzini, M., Audenino, A.L. & Zanetti, E.M., On-site testing of sutured organs: An experimental set up to cyclically tighten sutures. Journal of the Mechanical Behavior of Biomedical Materials, 109, pp. 103803, 2020. https://doi.org/10.1016/j.jmbbm.2020.103803
[19] Pascoletti, G., et al., Dynamic characterization of the biomechanical behaviour of bovine ovarian cortical tissue and its short-term effect on ovarian tissue and follicles. Materials (Basel), 13(17), p. 3759, 2020. https://doi.org/10.3390/ma13173759
[20] Pascoletti, G., Pressanto, M.C., Putame, G., Terzini, M., Franceschini, G. & Zanetti, E.M., Design of a loading system for cyclic test on sutured organs. MethodsX, 7(7), p. 100988, 2020. https://doi.org/10.1016/j.mex.2020.100988
[21] Pascoletti, G., Pressanto, M.C., Putame, G., Terzini, M., Franceschini, G. & Zanetti, E.M., Data from cyclic tensile tests on sutured organs to evaluate creep behaviour, distraction, and residual thread strength. Data Brief, 30, p. 105644, 2020. https://doi. org/10.1016/j.dib.2020.105644
[22] Belviso, I., et al., Decellularized human dermal matrix as a biological scaffold for cardiac repair and regeneration. Frontiers in Bioengineering and Biotechnology, 8, p. 229, 2020. https://doi.org/10.3389/fbioe.2020.00229
[23] Zanetti, E.M., Perrini, M., Bignardi, C. & Audenino, A.L., Bladder tissue passive response to monotonic and cyclic loading. Biorheology, 49, pp. 49–63, 2012. https:// doi.org/10.3233/bir-2012-0604
[24] Bhushan, B., Galasso, B., Bignardi, C., Nguyen, C.V., Dai, L. & Qu, L., Adhesion, friction and wear on nanoscale of MWNT Tips and SWNT and MWNT arrays. Nanotech- nology, 19, p. 125702, 2008. https://doi.org/10.1088/0957-4484/19/12/125702
[25] Peluccio, M.S., Bignardi, C., Lombardo, S., Montevecchi, F.M. & Carossa, S., Comparative study of nanomechanical properties of cements used in teeth restoration. Journal of Physics: Condensed Matter, 19, p. 395003, 2007. https://doi.org/10.1088/0953- 8984/19/39/395003
[26] Serino, G., Gusmini, M., Audenino, A.L., Bergamasco, G., Ieropoli, O. & Bignardi, C., Multiscale characterization of isotropic pyrolytic carbon used for mechanical heart valve production.Processes, 9, p. 338, 2021. https://doi.org/10.3390/pr9020338
[27] Pascoletti, G., et al., A novel technique for testing osteointegration in load-bearing conditions. WIT Trans. Engeering & Sciences, 124, pp. 187–194, 2019.
[28] Aldieri, A., et al., Osteoporotic hip fracture prediction: Is T-score-based criterion enough? A hip structural analysis-based model. Journal of Biomechanical Engineering, 140(11), Art no. 111004, 2018. https://doi.org/10.1115/1.4040586
[29] Bignardi, C., Zanetti, E.M., Terzini, M., Ciccola, A.R., Schierano, G. & Audenino, A.L., Reliability, learnability and efficiency of two tools for cement crowns retrieval in dentistry. The Open Biomedical Engineering Journal, 12(1), pp. 27–35, 2018. https:// doi.org/10.2174/1874120701812010027
[30] Terzini, M., Bignardi, C., Castagnoli, C., Cambieri, I., Zanetti, E.M. & Audenino, A.L., Dermis mechanical behaviour after different cell removal treatments. Medical Engineering & Physics, 38, pp. 862–869, 2016. https://doi.org/10.1016/j.medeng- phy.2016.02.012
[31] D’Amelio, P., et al., Bone mineral density and singh index predict bone mechanical properties of human femur. Connective Tissue Research, 49, pp. 99–104, 2008. https://doi.org/10.1080/03008200801913940
[32] Bellia, E., Boggione, L., Terzini, M., Manzella, C. & Menicucci, G., Immediate loading of mandibular overdentures retained by two mini-implants: A case series preliminary report. The International Journal of Prosthodontics, 31, pp. 558–564, 2018. https://doi. org/10.11607/ijp.5589
[33] Menicucci, G., Ceruti, P., Barabino, E., Screti, A., Bignardi, C. & Preti, G., A preliminary in vivo trial of load transfer in mandibular implant-retained overdentures anchored in 2 different ways: Allowing and counteracting free rotation. The International Journal of Prosthodontics, 19(6), pp. 574–576, 2006.
[34] Manzella, C., Burello, V., Bignardi, C., Carossa, S. &Schierano, G., A method to improve passive fit of frameworks on implant-supported prostheses: An in vivo study. The International Journal of Prosthodontics, 26(6), pp. 577–579, 2013. https://doi. org/10.11607/ijp.3326
[35] Manzella, C., Bignardi, C., Burello, V., Carossa, S. & Schierano, G., Method to improve passive fit of frameworks on implant-supported prostheses: An in vitro study. The Journal of Prosthetic Dentistry, 116(1), pp. 52–58, 2016. https://doi.org/10.1016/j.pros- dent.2016.01.006
[36] Aldieri, A., Terzini, M., Bignardi, C., Zanetti, E.M. & Audenino, A.L. Implementation and validation of constitutive relations for human dermis mechanical response. Medical & Biological Engineering & Computing, 56(11), pp. 2083–2093, 2018. https://doi. org/10.1007/s11517-018-1843-y
[37] Pascoletti, G., Catelani, D., Conti, P., Cianetti, F. & Zanetti, E.M., A multibody simulation of a human fall: Model creation and validation. Procedia Structural Integrity, 24, pp. 337–348, 2019. https://doi.org/10.1016/j.prostr.2020.02.031
[38] Pascoletti, G., Cianetti, F., Putame, G., Terzini, M. & Zanetti, E.M., Numerical simulation of an intramedullary Elastic Nail: Expansion phase and load-bearing behavior. Frontiers in Bioengineering and Biotechnology, 6, p. 174, 2018. https://doi.org/10.3389/ fbioe.2018.00174
[39] Falvo D’Urso Labate, G., et al., Bone structural similarity score: A multiparametric tool to match properties of biomimetic bone substitutes with their target tissues. Journal of Applied Biomaterials & Functional Materials, 14, pp. e277–e289, 2016. https://doi.org/10.5301/jabfm.5000283
[40] Aimetti, M., Manavella, V., Corano, L., Ercoli, E., Bignardi, C. & Romano, F., Three-dimensional analysis of bone remodeling following ridge augmentation of compromised extraction sockets in periodontitis patients: A randomized controlled study. Clinical Oral Implants Research, 29, pp. 202–214, 2018. https://doi.org/10.1111/clr.13099
[41] Pascoletti, G., Catelani, D., Conti, P., Cianetti, F. & Zanetti, E.M., Multibody models for the analysis of a fall from height: Accident, suicide, or murder? Frontiers in Bioengi- neering and Biotechnology, 7, p. 419, 2019. https://doi.org/10.3389/fbioe.2019.00419
[42] Zanetti, E.M., Bignardi, C. & Audenino, A.L., Human pelvis loading rig for static and dynamic stress analysis. Acta of Bioengineering and Biomechanics, 14, pp. 61–66, 2012. https://doi.org/10.3233/bir-2012-0604
[43] Zanetti, E.M., Crupi, V., Bignardi, C. & Calderale, P.M., Radiograph-based femur morphing method. Medical & Biological Engineering & Computing, 43, pp. 181–188, 2005. https://doi.org/10.1007/bf02345952
[44] Zanetti, E.M. & Bignardi, C., Mock-up in hip arthroplasty pre-operative planning. Acta of Bioengineering and Biomechanics, 15, pp. 123–128, 2013.
[45] Manavella, V., Romano, F., Garrone, F., Terzini, M., Bignardi, C. & Aimetti, M., A novel image processing technique for 3D volumetric analysis of severely resorbed alve- olar sockets with CBCT. Minerva Stomatologica, 66(3), pp. 81–90, 2017.
[46] Aldieri, A., Terzini, M., Audenino, A.L., Bignardi, C. & Morbiducci, U., Combining shape and intensity dxa-based statistical approaches for osteoporotic HIP fracture risk assessment. Computers in Biology and Medicine, 127, Article no. 104093, 2020. https:// doi.org/10.1016/j.compbiomed.2020.104093
[47] Putzer, D., Nogler, M., Terzini, M., Mannara, R. & Bignardi, C., A finite element analysis for a new short stem concept design with spherical bone interface for hip resurfac- ing. Journal of Mechanical Science and Technology, 9(3), pp. 923–935, 2018. https:// doi.org/10.1007/bf02916333
[48] Terzini, M., Aldieri, A., Nurisso, S., De Nisco, G. & Bignardi, C., Finite element model- ing application in forensic practice: A periprosthetic femoral fracture case study. Frontiers in Bioengineering and Biotechnology, 8, pp. 1–11, 2020. https://doi.org/10.3389/ fbioe.2020.00619
[49] Terzini, M., Aldieri, A., Rinaudo, L. & Osella, G., Improving the hip fracture risk predic- tion through 2D finite element models from DXA images: Validation against 3D models. Frontiers in Bioengineering and Biotechnology, 7, 2019. https://doi.org/10.3389/ fbioe.2019.00220
[50] Vitale, M.C., Chiesa, M., Coltellaro, F., Bignardi, C., Celozzi, M. & Poggio, C., FEM anal- ysis of different dental root canal-post systems in young permanent teeth. European Jour- nal of Paediatric Dentistry, 9(3), pp. 111–117, 2008. https://doi.org/10.1111/ipd.12587
[51] Heuer, F., Schmidt, H., Klezl, Z., Claes, L. & Wilke, H.J., Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. Journal of Biomechanics, 40, pp. 271–280, 2007. https://doi.org/10.1016/j.jbiomech.2006.01.007
[52] Vinyas, V., Adhikari, R. & Shyamasunder Bath, N., Review on the progress in development of finite element models for functional spinal units: Focus on lumbar and lum- bosacral levels. Malaysian Journal of Medicine and Health Sciences, 16, pp. 66–74, 2020. https://doi.org/10.1097/bsd.0b013e31812e6276
[53] Abouhossein, A., Weisse, B. & Ferguson, S.J., Quantifying the centre of rotation pattern in a multi-body model of the lumbar spine. Computer Methods in Biomechanics and Biomedical Engineering, 16, pp. 1362–1373, 2013. https://doi.org/10.1080/10255842. 2012.671306
[54] Zheng, J., Tang, L. & Hu, J., A numerical investigation of risk factors affecting lumbar spine injuries using a detailed lumbar model. Applied Bionics and Biomechanics, Article ID 8626102, 2018. https://doi.org/10.1155/2018/8626102
[55] Schlager, B., Niemeyer, F., Galbusera, F., Volkheimer, D., Jonas, R. & Wilke, H.J., Uncertainty analysis of material properties and morphology parameters in numerical models regarding the motion of lumbar vertebral segments. Computer Methods in Bio-mechanics and Biomedical Engineering, 21, pp. 673–683, 2018. https://doi.org/10.108 0/10255842.2018.1508571
[56] Ghezelbash, F., et al., Modeling of human intervertebral disc annulus fibrosus with complex multi-fiber networks. Acta Biomaterialia, 123, pp. 208–221, 2021. https://doi. org/10.1016/j.actbio.2020.12.062
[57] Rupp, T.K., Ehlers, W., Karajan, N., Günther, M. & Schmitt, S., A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Biomechanics and Modeling in Mechanobiology, 14, pp. 1081–1105, 2015. https://doi.org/10.1007/s10237-015-0656-2
[58] Christophy, M., Senan, N.A.F., Lotz, J.C. & O’Reilly, O.M., A Musculoskeletal model for the lumbar spine. Biomechanics and Modeling in Mechanobiology, 11, pp. 19–34, 2012. https://doi.org/10.1007/s10237-011-0290-6
[59] Damm, N., Rockenfeller, R. & Gruber, K., Lumbar spinal ligament characteristics extracted from stepwise reduction experiments allow for preciser modeling than literature data. Biomechanics and Modeling in Mechanobiology, 19, pp. 893–910, 2020. https://doi.org/10.1007/s10237-019-01259-6
[60] Panjabi, M.M., et al., Human lumbar vertebrae quantitative three-dimntional anatomy. Spine (Phila. Pa. 1976), 17, pp. 299–306, 1992. https://doi.org/10.1097/00007632- 199203000-00010
[61] Panjabi, M.M., Goel, V.K. & Takata, K., Physiologic Strains in the Lumbar Spinal Ligaments. Spine (Phila. Pa. 1976), 7, pp. 192–203, 1982. https://doi.org/10.1097/00007632- 198205000-00003
[62] Aspden, R.M., Review of the functional anatomy of the spinal ligaments and the lumbar erector spinae muscles. Clinical Anatomy, 5, pp. 372–387, 1992. https://doi. org/10.1002/ca.980050504
[63] Pintar, F.A., Yoganandan, N., Myers, T., Elhagediab, A. & Sances, A., Biomechanical properties oh human lumbar spine ligaments. Journal of Biomechanics, 25, pp. 1351– 1356, 1992. https://doi.org/10.1016/0021-9290(92)90290-h
[64] Nachemson, A.L. & Evans, J.H., Some mechanical properties of the third human lum- bar interlaminar ligament (ligamentum flavum). Journal of Biomechanics, 1(3), pp. 211–220, 1968. https://doi.org/10.1016/0021-9290(68)90006-7
[65] Chazal, J., et al., Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. Journal of Biomechanics, 18, pp. 167–176, 1985. https://doi.org/10.1016/0021-9290(85)90202-7
[66] Robertson, D.J., Von Forell, G.A., Alsup, J. & Bowden, A.E., Thoracolumbar spinal ligaments exhibit negative and transverse pre-strain. Journal of the Mechanical Behavior of Biomedical Materials, 23, pp. 44–52, 2013. https://doi.org/10.1016/j. jmbbm.2013.04.004
[67] Gardner-Morse, M.G. & Stokes, I.A.F., Structural behavior of human lumbar spinal motion segments. Journal of Biomechanics, 37, pp. 205–212, 2004. https://doi. org/10.1016/j.jbiomech.2003.10.003
[68] Huynh, K.T., Gibson, I., Lu, W.F. & Jagdish, B.N., Simulating dynamics of thoraco- lumbar spine derived from life MOD under haptic forces. World Academy of Science, Engineering and Technology, 64, pp. 278–285, 2010.
[69] Meng, X., Bruno, A.G., Cheng, B., Wang, W., Bouxsein, M.L. & Anderson, D.E., Incor- porating six degree-of-freedom intervertebral joint stiffness in a lumbar spine musculo- skeletal model - Method and performance in flexed postures. Journal of Biomechanics Engineering, 137, pp. 1–9, 2015. https://doi.org/10.1115/1.4031417
[70] Patwardhan, A.G., Havey, R.M., Carandang, G., Simonds, J., Voronov, L.I., Ghanayem, A.J., Meade, K.P., Gavin, T.M. & Paxinos, O., Effect of compressive follower preload on the flexion-extension response of the human lumbar spine. Journal of Orthopaedic Research, 21, pp. 540–546, 2003. https://doi.org/10.1016/s0736-0266(02)00202-4
[71] Bell, K.M., Debski, R.E., Sowa, G.A., Kang, J.D. & Tashman, S., Optimization of com- pressive loading parameters to mimic in vivo cervical spine kinematics in vitro. Journal of Biomechanics, 87, pp. 107–113, 2019. https://doi.org/10.1016/j.jbiomech.2019.02.022
[72] Volkheimer, D., Malakoutian, M., Oxland, T.R. & Wilke, H.J., Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechan- ics: Critical analysis of the literature. European Spine Journal, 24, pp. 1882–1892, 2015. https://doi.org/10.1007/s00586-015-4040-9
[73] Bell, K.M., Yan, Y., Hartman, R.A. & Lee, J.Y., Influence of follower load application on moment-rotation parameters and intradiscal pressure in the cervical spine. Journal of Biomechanics, 76, pp. 167–172, 2018. https://doi.org/10.1016/j.jbiomech.2018.05.031
[74] Widmer, J., Cornaz, F., Scheibler, G., Spirig, J.M., Snedeker, J.G. & Farshad, M., Bio- mechanical contribution of spinal structures to stability of the lumbar spine—novel biomechanical insights. The Spine Journal, 20, pp. 1705–1716, 2020. https://doi. org/10.1016/j.spinee.2020.05.541
[75] Widmer, J., Fornaciari, P., Senteler, M., Roth, T., Snedeker, J.G. & Farshad, M., Kine- matics of the Spine Under Healthy and Degenerative Conditions: A systematic review. Annals of Biomedical Engineering, 47, pp. 1491–1522, 2019. https://doi.org/10.1007/ s10439-019-02252-x
[76] Cripton, P.A., Bruehlmann, S.B., Orr, T.E., Oxland, T.R. & Nolte, L.P., In vitro axial preload application during spine flexibility testing: Towards reduced apparatus-related artefacts. Journal of Biomechanics, 33, pp. 1559–1568, 2000. https://doi.org/10.1016/ s0021-9290(00)00145-7
[77] Demetropoulos, C.K., Yang, K.H., Grimm, M.J., Khalil, T.B. & King, A.I., Mechanical properties of the cadaveric and hybrid III lumbar spines. SAE Technical Paper Series, 107, pp. 2862–2871, 1998.
[78] Panjabi, M.M., Oxland, T.R. , Yamamoto, I. & Crisco, J.J., Mechanical behavior of the human lumbar and lumbosacral Spine as shown by three-dimensional load-displace- ment curves. The Journal of Bone & Joint Surgery, 76(3), pp. 413–424, 1994. https:// doi.org/10.2106/00004623-199403000-00012
[79] Zhang, C., Mannen, E.M., Sis, H.L., Cadel, E.S., Wong, B.M., Wang, W., Cheng, B., Friis, E.A. & Anderson, D.E., Moment-rotation behavior of intervertebral joints in flexion-extension, lateral bending, and axial rotation at all levels of the human spine: A structured review and meta-regression analysis. Journal of Biomechanics, 100, p. 109579, 2020. https://doi.org/10.1016/j.jbiomech.2019.109579
[80] Oxland, T.R., Fundamental biomechanics of the spine-What we have learned in the past 25 years and future directions. Journal of Biomechanics, 49, pp. 817–832, 2016. https:// doi.org/10.1016/j.jbiomech.2015.10.035