Phantom-Based Lumbar Spine Experimental Investigation and Validation of a Multibody Model

Phantom-Based Lumbar Spine Experimental Investigation and Validation of a Multibody Model

Simone Borrelli Andrea Formaggio Vittoria Civilini Andrea T. Lugas

Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy

PolitoBIOMedLab, Politecnico di Torino, 10129 Turin, Italy

Available online: 
| Citation



The study of the biomechanics of the human spine is not yet developed extensively. Recent developments in this field have heightened the need for observing the spine from a comprehensive perspective to understand the complex biomechanical patterns, which underlie the kinematic and dynamic responses of this multiple-joint column. Within this frame of exigence, a joint study embracing experimental tests and multibody modelling was designed. This study provides novel insights to the segmental contribution profiles in flexion and extension, analysing different forms of sagittal-plane angles. Moreover, the validation of the multibody model contributes to defining the key aspects for a consistent spine modelling as well as it introduces the basis for simulating pathological conditions and post-orthopaedic surgical outcomes.


Lumbar spine multibody model, Lumbar spine phantom, Multi-segment spine, Sawbones lumbar spine, Spine biomechanics


[1] Logozzo, S., Kilpelä, A., Mäkynen, A., Zanetti, E.M. & Franceschini, G., Recent advances in dental optics - Part II: Experimental tests for a new intraoral scanner. Optics and Lasers in Engineering, 54, pp. 187–196, 2014. optlaseng.2013.07.024

[2] Putame, G., et al., Surgical treatments for canine anterior cruciate ligament rupture: Assessing functional recovery through  multibody  comparative  analysis.  Frontiers in Bioengineering and Biotechnology, 7, pp. 1–11, 2019.

[3] Terzini, M., Bignardi, C., Castagnoli, C., Cambieri, I., Zanetti, E.M. & Audenino, A.L., Ex vivo dermis mechanical behavior in relation to decellularization treatment length. The Open Biomedical Engineering Journal, 10, pp. 34–42, 2016.

[4] Putame, G., et al., Application of 3D Printing Technology for Design and Manufacturing of Customized Components for a Mechanical Stretching Bioreactor. Journal of Healthcare Engineering, Article ID 3957931, 2019.

[5] Zanetti, E.M., et al., A structural numerical model for the optimization of double pelvic osteotomy in the early treatment of canine hip dysplasia. Veterinary and Comparative Orthopaedics and Traumatology, 30(4), pp. 256–264, 2017.

[6] Putame, G., Pascoletti, G., Terzini, M., Zanetti, E.M. & Audenino, A.L. Mechanical behavior of elastic self-locking nails for intramedullary fracture fixation: A numerical analysis of innovative nail designs. Frontiers in Bioengineering and Biotechnology, 8, pp. 1–10, 2020.

[7] Calì, M., Pascoletti, G., Gaeta, M., Milazzo, G. & Ambu, R., A new generation of bio- composite thermoplastic filaments for a more sustainable design of parts manufactured by FDM. Applied Sciences, 10(17), p. 5852, 2020.

[8] Corapi, D., Morettini, G., Pascoletti, G. & Zitelli, C., Characterization of a polylactic acid (PLA) produced by fused deposition modeling (FDM) technology. Procedia Structural Integrity, 24, pp. 289–295, 2019.

[9] Calì, M., Pascoletti, G., Gaeta, M., Milazzo, G. & Ambu, R., New filaments with natural fillers for FDM 3D printing and their applications in biomedical field. Procedia Manufacturing, 51, pp. 698–703, 2020.

[10] Zanetti, E.M., et al., Modal analysis for implant stability assessment: Sensitivity of this methodology for different implant designs. Dental Materials, 34(8), pp. 1235–1245, 2018.

[11] Dichio, G., et al., Engineering and manufacturing of a dynamizable fracture fixation device system. Applied Sciences, 10(19), p. 6844, 2020.

[12] Lugas, A.T., et al., In vitro simulation of dental implant bridges removal: Influence of luting agent and abutments geometry on retrievability. Materials (Basel), 13, pp. 1–11, 2020.

[13] Putame, G., Pascoletti, G., Franceschini, G., Dichio, G. & Terzini, M., Prosthetic Hip ROM from multibody software simulation. Proceeding of Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5386–5389, 2019.

[14] Lugas, A.T., et al., In vitro impact testing to simulate implant-supported prosthesis retrievability in clinical practice : Influence of cement and abutment geometry. Materials (Basel), 13(7), p. 1749, 2020.

[15] Terzini, M., Di Pietro, A., Aprato, A., Artiaco, S., Massè, A. & Bignardi, C., Are suprapectineal quadrilateral surface buttressing plates performances superior to traditional fixation ? A finite element analysis. Applied Sciences, 11(2), p. 858, 2021. https://doi. org/10.3390/app11020858

[16] Terzini, M., et al., Multibody modelling of ligamentous and bony stabilizers in the human elbow. Muscles, Ligaments and Tendons Journal, 7, pp. 493–502, 2017.

[17] Bignardi, C., et al., Pelvic manipulator for fractures reduction. International Journal of Radiology and Imaging Technology, 9, pp. 570–580, 2018.

[18] Pascoletti, G., Pressanto, M.C., Putame, G., Terzini, M., Audenino, A.L. & Zanetti, E.M., On-site testing of sutured organs: An experimental set up to cyclically tighten sutures. Journal of the Mechanical Behavior of Biomedical Materials, 109, pp. 103803, 2020.

[19] Pascoletti, G., et al., Dynamic characterization of the biomechanical behaviour of bovine ovarian cortical tissue and its short-term effect on ovarian tissue and follicles. Materials (Basel), 13(17), p. 3759, 2020.

[20] Pascoletti, G., Pressanto, M.C., Putame, G., Terzini, M., Franceschini, G. & Zanetti, E.M., Design of a loading system for cyclic test on sutured organs. MethodsX, 7(7), p. 100988, 2020.

[21] Pascoletti, G., Pressanto, M.C., Putame, G., Terzini, M., Franceschini, G. & Zanetti, E.M., Data from cyclic tensile tests on sutured organs to evaluate creep behaviour, distraction, and residual thread strength. Data Brief, 30, p. 105644, 2020. https://doi. org/10.1016/j.dib.2020.105644

[22] Belviso, I., et al., Decellularized human dermal matrix as a biological scaffold for cardiac repair and regeneration. Frontiers in Bioengineering and Biotechnology, 8, p. 229, 2020.

[23] Zanetti, E.M., Perrini, M., Bignardi, C. & Audenino, A.L., Bladder tissue passive response to monotonic and cyclic loading. Biorheology, 49, pp. 49–63, 2012. https://

[24] Bhushan, B., Galasso, B., Bignardi, C., Nguyen, C.V., Dai, L. & Qu, L., Adhesion, friction and wear on nanoscale of MWNT Tips and SWNT and MWNT arrays. Nanotech- nology, 19, p. 125702, 2008.

[25] Peluccio, M.S., Bignardi, C., Lombardo, S., Montevecchi, F.M. & Carossa, S., Comparative study of nanomechanical properties of cements used in teeth restoration. Journal of Physics: Condensed Matter, 19, p. 395003, 2007. 8984/19/39/395003

[26] Serino, G., Gusmini, M., Audenino, A.L., Bergamasco, G., Ieropoli, O. & Bignardi, C., Multiscale characterization of isotropic pyrolytic carbon used for mechanical heart valve production.Processes, 9, p. 338, 2021.

[27] Pascoletti, G., et al., A novel technique for testing osteointegration in load-bearing conditions. WIT Trans. Engeering & Sciences, 124, pp. 187–194, 2019.

[28] Aldieri, A., et al., Osteoporotic hip fracture prediction: Is T-score-based criterion enough? A hip structural analysis-based model. Journal of Biomechanical Engineering, 140(11), Art no. 111004, 2018.

[29] Bignardi, C., Zanetti, E.M., Terzini, M., Ciccola, A.R., Schierano, G. & Audenino, A.L., Reliability, learnability and efficiency of two tools for cement crowns retrieval in dentistry. The Open Biomedical Engineering Journal, 12(1), pp. 27–35, 2018. https://

[30] Terzini, M., Bignardi, C., Castagnoli, C., Cambieri, I., Zanetti, E.M. & Audenino, A.L., Dermis mechanical behaviour after different cell removal treatments. Medical Engineering & Physics, 38, pp. 862–869, 2016. phy.2016.02.012

[31] D’Amelio, P., et al., Bone mineral density and singh index predict bone mechanical properties of human femur. Connective Tissue Research, 49, pp. 99–104, 2008.

[32] Bellia, E., Boggione, L., Terzini, M., Manzella, C. & Menicucci, G., Immediate loading of mandibular overdentures retained by two mini-implants: A case series preliminary report. The International Journal of Prosthodontics, 31, pp. 558–564, 2018. https://doi. org/10.11607/ijp.5589

[33] Menicucci, G., Ceruti, P., Barabino, E., Screti, A., Bignardi, C. & Preti, G., A preliminary in vivo trial of load transfer in mandibular implant-retained overdentures anchored in 2 different ways: Allowing and counteracting free rotation. The International Journal of Prosthodontics, 19(6), pp. 574–576, 2006.

[34] Manzella, C., Burello, V., Bignardi, C., Carossa, S. &Schierano, G., A method to improve passive fit of frameworks on implant-supported prostheses: An in vivo study. The International Journal of Prosthodontics, 26(6), pp. 577–579, 2013. https://doi. org/10.11607/ijp.3326

[35] Manzella, C., Bignardi, C., Burello, V., Carossa, S. & Schierano, G., Method to improve passive fit of frameworks on implant-supported prostheses: An in vitro study. The Journal of Prosthetic Dentistry, 116(1), pp. 52–58, 2016. dent.2016.01.006

[36] Aldieri, A., Terzini, M., Bignardi, C., Zanetti, E.M. & Audenino, A.L. Implementation and validation of constitutive relations for human dermis mechanical response. Medical & Biological Engineering & Computing, 56(11), pp. 2083–2093, 2018. https://doi. org/10.1007/s11517-018-1843-y

[37] Pascoletti, G., Catelani, D., Conti, P., Cianetti, F. & Zanetti, E.M., A multibody simulation of a human fall: Model creation and validation. Procedia Structural Integrity, 24, pp. 337–348, 2019.

[38] Pascoletti, G., Cianetti, F., Putame, G., Terzini, M. & Zanetti, E.M., Numerical simulation of an intramedullary Elastic Nail: Expansion phase and load-bearing behavior. Frontiers in Bioengineering and Biotechnology, 6, p. 174, 2018. fbioe.2018.00174

[39] Falvo D’Urso Labate, G., et al., Bone structural similarity score: A multiparametric tool to match properties of biomimetic bone substitutes with their target tissues. Journal of Applied Biomaterials & Functional Materials, 14, pp. e277–e289, 2016.

[40] Aimetti, M., Manavella, V., Corano, L., Ercoli, E., Bignardi, C. & Romano, F., Three-dimensional analysis of bone remodeling following ridge augmentation of compromised extraction sockets in periodontitis patients: A randomized controlled study. Clinical Oral Implants Research, 29, pp. 202–214, 2018.

[41] Pascoletti, G., Catelani, D., Conti, P., Cianetti, F. & Zanetti, E.M., Multibody models for the analysis of a fall from height: Accident, suicide, or murder? Frontiers in Bioengi- neering and Biotechnology, 7, p. 419, 2019.

[42] Zanetti, E.M., Bignardi, C. & Audenino, A.L., Human pelvis loading rig for static and dynamic stress analysis. Acta of Bioengineering and Biomechanics, 14, pp. 61–66, 2012.

[43] Zanetti, E.M., Crupi, V., Bignardi, C. & Calderale, P.M., Radiograph-based femur morphing method. Medical & Biological Engineering & Computing, 43, pp. 181–188, 2005.

[44] Zanetti, E.M. & Bignardi, C., Mock-up in hip arthroplasty pre-operative planning. Acta of Bioengineering and Biomechanics, 15, pp. 123–128, 2013.

[45] Manavella, V., Romano, F., Garrone, F., Terzini, M., Bignardi, C. & Aimetti, M., A novel image processing technique for 3D volumetric analysis of severely resorbed alve- olar sockets with CBCT. Minerva Stomatologica, 66(3), pp. 81–90, 2017.

[46] Aldieri, A., Terzini, M., Audenino, A.L., Bignardi, C. & Morbiducci, U., Combining shape and intensity dxa-based statistical approaches for osteoporotic HIP fracture risk assessment. Computers in Biology and Medicine, 127, Article no. 104093, 2020. https://

[47] Putzer, D., Nogler, M., Terzini, M., Mannara, R. & Bignardi, C., A finite element analysis for a new short stem concept design with spherical bone interface for hip resurfac- ing. Journal of Mechanical Science and Technology, 9(3), pp. 923–935, 2018. https://

[48] Terzini, M., Aldieri, A., Nurisso, S., De Nisco, G. & Bignardi, C., Finite element model- ing application in forensic practice: A periprosthetic femoral fracture case study. Frontiers in Bioengineering and Biotechnology, 8, pp. 1–11, 2020. fbioe.2020.00619

[49] Terzini, M., Aldieri, A., Rinaudo, L. & Osella, G., Improving the hip fracture risk predic- tion through 2D finite element models from DXA images: Validation against 3D models. Frontiers in Bioengineering and Biotechnology, 7, 2019. fbioe.2019.00220

[50] Vitale, M.C., Chiesa, M., Coltellaro, F., Bignardi, C., Celozzi, M. & Poggio, C., FEM anal- ysis of different dental root canal-post systems in young permanent teeth. European Jour- nal of Paediatric Dentistry, 9(3), pp. 111–117, 2008.

[51] Heuer, F., Schmidt, H., Klezl, Z., Claes, L. & Wilke, H.J., Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. Journal of Biomechanics, 40, pp. 271–280, 2007.

[52] Vinyas, V., Adhikari, R. & Shyamasunder Bath, N., Review on the progress in development of finite element models for functional spinal units: Focus on lumbar and lum- bosacral levels. Malaysian Journal of Medicine and Health Sciences, 16, pp. 66–74, 2020.

[53] Abouhossein, A., Weisse, B. & Ferguson, S.J., Quantifying the centre of rotation pattern in a multi-body model of the lumbar spine. Computer Methods in Biomechanics and Biomedical Engineering, 16, pp. 1362–1373, 2013. 2012.671306

[54] Zheng, J., Tang, L. & Hu, J., A numerical investigation of risk factors affecting lumbar spine injuries using a detailed lumbar model. Applied Bionics and Biomechanics, Article ID 8626102, 2018.

[55] Schlager, B., Niemeyer, F., Galbusera, F., Volkheimer, D., Jonas, R. & Wilke, H.J., Uncertainty analysis of material properties and morphology parameters in numerical models regarding the motion of lumbar vertebral segments. Computer Methods in Bio-mechanics and Biomedical Engineering, 21, pp. 673–683, 2018. 0/10255842.2018.1508571

[56] Ghezelbash, F., et al., Modeling of human intervertebral disc annulus fibrosus with complex multi-fiber networks. Acta Biomaterialia, 123, pp. 208–221, 2021. https://doi. org/10.1016/j.actbio.2020.12.062

[57] Rupp, T.K., Ehlers, W., Karajan, N., Günther, M. & Schmitt, S., A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Biomechanics and Modeling in Mechanobiology, 14, pp. 1081–1105, 2015.

[58] Christophy, M., Senan, N.A.F., Lotz, J.C. & O’Reilly, O.M., A Musculoskeletal model for the lumbar spine. Biomechanics and Modeling in Mechanobiology, 11, pp. 19–34, 2012.

[59] Damm, N., Rockenfeller, R. & Gruber, K., Lumbar spinal ligament characteristics extracted from stepwise reduction experiments allow for preciser modeling than literature data. Biomechanics and Modeling in Mechanobiology, 19, pp.  893–910, 2020.

[60] Panjabi, M.M., et al., Human lumbar vertebrae quantitative three-dimntional anatomy. Spine (Phila. Pa. 1976), 17, pp. 299–306, 1992. 199203000-00010

[61] Panjabi, M.M., Goel, V.K. & Takata, K., Physiologic Strains in the Lumbar Spinal Ligaments. Spine (Phila. Pa. 1976), 7, pp. 192–203, 1982. 198205000-00003

[62] Aspden, R.M., Review of the functional anatomy of the spinal ligaments and the lumbar erector spinae muscles. Clinical Anatomy, 5, pp. 372–387, 1992. https://doi. org/10.1002/ca.980050504

[63] Pintar, F.A., Yoganandan, N., Myers, T., Elhagediab, A. & Sances, A., Biomechanical properties oh human lumbar spine ligaments. Journal of Biomechanics, 25, pp. 1351– 1356, 1992.

[64] Nachemson, A.L. & Evans, J.H., Some mechanical properties of the third human lum- bar interlaminar ligament (ligamentum flavum). Journal of Biomechanics, 1(3), pp. 211–220, 1968.

[65] Chazal, J., et al., Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. Journal of Biomechanics, 18, pp. 167–176, 1985.

[66] Robertson, D.J., Von Forell, G.A., Alsup, J. &  Bowden, A.E.,  Thoracolumbar spinal ligaments exhibit negative and transverse pre-strain. Journal of the Mechanical Behavior of Biomedical Materials, 23, pp. 44–52, 2013. jmbbm.2013.04.004

[67] Gardner-Morse, M.G. & Stokes, I.A.F.,  Structural behavior of human lumbar spinal motion segments. Journal of Biomechanics, 37, pp. 205–212, 2004. https://doi. org/10.1016/j.jbiomech.2003.10.003

[68] Huynh, K.T., Gibson, I., Lu, W.F. & Jagdish, B.N., Simulating dynamics of thoraco- lumbar spine derived from life MOD under haptic forces. World Academy of Science, Engineering and Technology, 64, pp. 278–285, 2010.

[69] Meng, X., Bruno, A.G., Cheng, B., Wang, W., Bouxsein, M.L. & Anderson, D.E., Incor- porating six degree-of-freedom intervertebral joint stiffness in a lumbar spine musculo- skeletal model - Method and performance in flexed postures. Journal of Biomechanics Engineering, 137, pp. 1–9, 2015.

[70] Patwardhan, A.G., Havey, R.M., Carandang, G., Simonds, J., Voronov, L.I., Ghanayem, A.J., Meade, K.P., Gavin, T.M. & Paxinos, O., Effect of compressive follower preload on the flexion-extension response of the human lumbar spine. Journal of Orthopaedic Research, 21, pp. 540–546, 2003.

[71] Bell, K.M., Debski, R.E., Sowa, G.A., Kang, J.D. & Tashman, S., Optimization of com- pressive loading parameters to mimic in vivo cervical spine kinematics in vitro. Journal of Biomechanics, 87, pp. 107–113, 2019.

[72] Volkheimer, D., Malakoutian, M., Oxland, T.R. & Wilke, H.J., Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechan- ics: Critical analysis of the literature. European Spine Journal, 24, pp. 1882–1892, 2015.

[73] Bell, K.M., Yan, Y., Hartman, R.A. & Lee, J.Y., Influence of follower load application on moment-rotation parameters and intradiscal pressure in the cervical spine. Journal of Biomechanics, 76, pp. 167–172, 2018.

[74] Widmer, J., Cornaz, F., Scheibler, G., Spirig, J.M., Snedeker, J.G. & Farshad, M., Bio- mechanical contribution of spinal structures to stability of the lumbar spine—novel  biomechanical insights. The Spine Journal, 20, pp. 1705–1716, 2020. https://doi. org/10.1016/j.spinee.2020.05.541

[75] Widmer, J., Fornaciari, P., Senteler, M., Roth, T., Snedeker, J.G. & Farshad, M., Kine- matics of the Spine Under Healthy and Degenerative Conditions: A systematic review. Annals of Biomedical Engineering, 47, pp. 1491–1522, 2019. s10439-019-02252-x

[76] Cripton, P.A., Bruehlmann, S.B., Orr, T.E., Oxland, T.R. & Nolte, L.P., In vitro axial preload application during spine flexibility testing: Towards reduced apparatus-related artefacts. Journal of Biomechanics, 33, pp. 1559–1568, 2000. s0021-9290(00)00145-7

[77] Demetropoulos, C.K., Yang, K.H., Grimm, M.J., Khalil, T.B. & King, A.I., Mechanical properties of the cadaveric and hybrid III lumbar spines. SAE Technical Paper Series, 107, pp. 2862–2871, 1998.

[78] Panjabi, M.M., Oxland, T.R. , Yamamoto, I. & Crisco, J.J., Mechanical behavior of the human lumbar and lumbosacral Spine as shown by three-dimensional load-displace- ment curves. The Journal of Bone & Joint Surgery, 76(3), pp. 413–424, 1994. https://

[79] Zhang, C., Mannen, E.M., Sis, H.L., Cadel, E.S., Wong, B.M., Wang, W., Cheng, B., Friis, E.A. & Anderson, D.E., Moment-rotation behavior of intervertebral joints in flexion-extension, lateral bending, and axial rotation at all levels of the human spine: A structured review and  meta-regression  analysis.  Journal  of  Biomechanics,  100, p. 109579, 2020.

[80] Oxland, T.R., Fundamental biomechanics of the spine-What we have learned in the past 25 years and future directions. Journal of Biomechanics, 49, pp. 817–832, 2016. https://