Numerical Study of an Impulse Wave Generated by a Sliding Mass

Numerical Study of an Impulse Wave Generated by a Sliding Mass

Eugenio Schillaci Federico Favre Oscar Antepara Néstor Balcázar Asensi Oliva

Heat and Mass Transfer Technological Center (CTTC), Universitat Politècnica de Catalunya - BarcelonaTech (UPC), ESEIAAT, Barcelona, Spain

Instituto de Ingenierı́a Mecánica y Producción Industrial (IIMPI), Universidad de la República (UdelaR), Uruguay

Page: 
98-109
|
DOI: 
https://doi.org/10.2495/CMEM-V6-N1-98-109
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

In this work, a numerical framework for the direct numerical simulation of tsunami waves generated by landslide events is proposed. The method, implemented on the TermoFluids numerical platform, adopts a free surface model for the simulation of momentum equations; thus, considering the effect of air on the flow physics negligible. The effect of the solid motion on the flow is taken into account by means of a direct forcing immersed boundary method (IBM).

The method is available for 3-D unstructured meshes; however, it can be integrated with an adaptive mesh refinement (AMR) tool to dynamically increase the local definition of the mesh in the vicinity of the interfaces, which separate the phases or in the presence of vortical structures.

The method is firstly validated by simulating the entrance of objects into still water surfaces for 2-D and 3-D configurations. Next, the case of tsunami generation from a subaerial landslide is studied and the results are validated by comparison to experimental and numerical measurements. Overall, the model demonstrates its efficiency in the simulation of this type of physics, and a wide versatility in the choice of the domain discretization.

  References

[1] Bardet, J.P., Synolakis, C.E., Davies, H.L., Imamura, F. & Okal, E. A. Landslide tsuna- mis: recent findings and research directions, Birkhäuser Basel, pp. 1793–1809, 2003. https://doi.org/10.1007/978-3-0348-7995-8_1

[2] Liu, P.F., Wu, T.R., Raichlen, F., Synolakis, C.E. & Borrero, J.C., Runup and run- down generated by three-dimensional sliding masses. Journal of fluid Mechanics, 536, pp. 107–144, 2005. https://doi.org/10.1017/s0022112005004799

[3] Løvholt, F., Pedersen, G., Harbitz, C. B., Glimsdal, S. & Kim, J., On the characteristics of landslide tsunamis. Philosophical Transactions of the Royal Society A: Mathemati- cal, Physical and Engineering Sciences, 373(2053), p. 20140376, 2015. https://doi.org/10.1098/rsta.2014.0376

[4] Available at: http://www.sms-tsunami-warning.com/pages/runup-inundation#.WJyDn- nUrKbk

[5] Available at: https://en.wikipedia.org/wiki/Vajont_Dam; https://en.wikipedia.org/ wiki/1998_Papua_New_Guinea_earthquake

[6] Yang, J. & Stern, F., Sharp interface immersed-boundary/level-set method for wave– body interactions. Journal of Computational Physics, 228(17), pp. 6590–6616, 2009. https://doi.org/10.1016/j.jcp.2009.05.047

[7] Sanders, J., Dolbow, J.E., Mucha, P.J. & Laursen, T.A., A new method for simulating rigid body motion in incompressible two–phase flow. International Journal for Numeri- cal Methods in Fluids, 67(6), pp. 713–732, 2011. https://doi.org/10.1002/fld.2385

[8] Calderer, A., Kang, S. & Sotiropoulos, F., Level set immersed boundary method for coupled simulation of air/water interaction with complex floating structures. Journal of Computational Physics, 277, pp. 201–227, 2014.https://doi.org/ 10.1016/j.jcp.2014.08.010

[9] Schillaci, E., Jofre, L., Balcázar, N., Lehmkuhl, O. & Oliva, A., A level-set aided single- phase model for the numerical simulation of free-surface flow on unstructured meshes. Computers & Fluids, 140, pp. 97–110, 2016. https://doi.org/10.1016/j.compfluid.2016.09.014

[10] Schillaci, E., Balcázar, N., Lehmkuhl, O., Jofre, L. & Castro, J., A free surface model for the numerical simulation of oscillating water column systems. In ECFD VI: Euro- pean Conference on Computational Fluid Dynamics, July, 2014.

[11] Balcázar, N., Jofre, L., Lehmkuhl, O., Castro, J. & Rigola, J., A finite-volume/level-set method for simulating two-phase flows on unstructured grids. International Journal of Multiphase Flow, 64, pp. 55–72, 2014. https://doi.org/10.1016/j.ijmultiphaseflow.2014.04.008

[12] Favre, F., Antepara, O., Lehmkuhl, O. & Borrell, R., On the fast transient spoiler deployment in a NACA0012 profile using LES techniques combined with AMR and IMB methods. In ECFD VI: European Conference on Computational Fluid Dynamics, July, 2014.

[13] Antepara, O., Lehmkuhl, O., Borrell, R., Chiva, J. & Oliva, A., Parallel adaptive mesh refinement for large-eddy simulations of turbulent flows. Computers & Fluids, 110, pp. 48–61, 2015. https://doi.org/ 10.1016/j.compfluid.2014.09.050

[14] Lehmkuhl, O., Perez-Segarra, C.D., Borrell, R., Soria, M. & Oliva, A., TERMOFLU- IDS: A new Parallel unstructured CFD code for the simulation of turbulent industrial problems on low cost PC Cluster. In Parallel computational fluid dynamics 2007, Springer Berlin Heidelberg, pp. 275–282, 2007.

[15] Gottlieb, S. & Shu, C.W., Total variation diminishing Runge-Kutta schemes. Math- ematics of computation of the American Mathematical Society, 67, pp. 73–85, 1998. https://doi.org/ 10.1090/S0025-5718-98-00913-2

[16] Fadlun, E.A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J., Combined Immersed-Bound- ary finite difference methods for three-dimensional complex flow simulations. Journal of Computational Physics, 161(1), pp. 35–60, 2000. https://doi.org/10.1006/jcph.2000.6484

[17] Schillaci, E., Lehmkuhl, O., Antepara, O. & Oliva, A., Direct numerical simulation   of multiphase flows with unstable interfaces. Journal of Physics: Conference Series, 745(3), p. 032114. https://doi.org/10.1088/1742-6596/745/3/032114

[18] Schillaci, E., Antepara, O., Lehmkuhl. O., Balcázar, N. & Oliva, A., Effectiveness of adaptive mesh refinement strategies in the dns of multiphase flows. Proceedings of International Symposium: Turbulent Heat and Mass Transfer VIII, 2015.

[19] Jofre, L., Lehmkuhl, O., Ventosa, J., Trias, F.X. & Oliva, A., Conservation properties of unstructured finite-volume mesh schemes for the Navier-Stokes equations. Numerical Heat Transfer, Part B: Fundamentals, 65, pp. 53–79, 2014. https://doi.org/10.1080/10407790.2013.836335

[20] Pelinovsky, E. & Poplavsky, A., Simplified model of tsunami generation by submarine landslides. Physics and Chemistry of the Earth, 21(1–2), pp. 13–17, 1996. https://doi.org/10.1016/s0079-1946(97)00003-7

[21] Wu, T.R., A numerical study of three-dimensional breaking waves and turbulence  effects. Thesis Dissertation. Cornell University, 2004.