Modelling of Post-Tensioned Timber-Framed Buildings with Seismic Rocking Mechanism at the Column-Foundation Connections

Modelling of Post-Tensioned Timber-Framed Buildings with Seismic Rocking Mechanism at the Column-Foundation Connections

Luca Pozza Marco Savoia Luca Franco Anna Saetta Diego Talledo

School of Engineering, University of Basilicata, Potenza, Italy

Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand

Page: 
966-978
|
DOI: 
https://doi.org/10.2495/CMEM-V5-N6-966-978
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The need to mitigate damage of buildings even after strong earthquakes has led to the development of high-performance seismic resisting systems. Extensive studies have been made in the last decade on the development and use of jointed ductile connections and on the effects of rocking vibration systems in reducing seismic damage of buildings. A recently developed technology for construction of multi-storey timber buildings called Pres-Lam system uses long lengths of prefabricated laminated timber and binds them together using pre-stressing steel tendons. When appropriately combining unbounded post-tensioned tendons, or rocking columns with additional sources of energy dissipation devices, a hybrid system is obtained, with self-centering and dissipative properties, leading to a characteristic flag-shape hysteresis behaviour.

A three-dimensional, three-storey, two-third scaled, post-tensioned timber frame model was tested at the structural laboratory of the University of Basilicata. During shaking table tests, two different configurations of the test model have been studied considering column-table connections with and without the activation of dissipative steel angles. This paper focuses on different numerical modelling of the rocking mechanisms at the column-foundation connections. Two different modelling have been considered for two different test configurations by means of a pinned base or an appropriate combination of nonlinear rotational springs, for free rocking and a suitable combination of gap elements and linear springs or rotational springs, for dissipative rocking. The numerical outcomes of nonlinear dynamic analysis are compared with experimental test results providing an adequate representation of the seismic response.

Keywords: 

dissipative rocking mechanism, free rocking mechanism, nonlinear modeling, post-tensioned timber frame, shaking table testing

  References

[1] Meek, J.W., Effects of foundation tipping on dynamic response. Journal of the StructuralDivision, 101(ST7), pp. 1297–1311, 1975

[2] Chopra, A.K. & Yim, S.C., Simplified analysis of structure with foundation uplift.Journal of Structural Engineering, 111(4), pp. 906–930, 1985

[3] Oliveto, G., Calio, I. & Greco, A., Large displacement behavior of a structural modelwith foundation uplift under impulsive and earthquake excitations. Earthquake Engineeringand Structural Dynamics, 32(3), pp. 369–393, 2003

[4] Midorikawa, M., Azuhata, T., Ishihara, T., & Wada A., Shaking table tests on seismicresponse of steel braced frames with column uplift. Earthquake Engineering and StructuralDynamics, 35(14), pp. 1767–1785, 2006.https://doi.org/10.1002/eqe.603

[5] Roh, H. &. Reinhorn, A.M., Modeling and seismic response of structures with concreterocking columns and viscous dampers. Engineering Structures, 32(8), pp. 2096–2107,2010.https://doi.org/10.1016/j.engstruct.2010.03.013

[6] Priestley, N., Sritharan, S., Conley, J., & Pampanin, S., Preliminary results and conclusions.PRESSS Five-Story Precast Concrete Test Building. PCI Journal, pp. 42–67,1999.https://doi.org/10.15554/pcij.11011999.42.67

[7] Palermo, A., Pampanin, S., Buchanan, A. & Newcombe, M.P., Seismic design of multistoreybuildings using Laminated Veneer Lumber (LVL), NZSEE Conference, Taupo,New Zealand, 2005a.

[8] Palermo, A., Pampanin, S. & Carr, A., Efficiency of simplified alternative modellingapproaches to predict the seismic response of precast concrete hybrid systems. FIBsymposium “Keep Concrete Attractive”, Budapest, Hungary, 2005b.

[9] Buchanan, A., Deam, B., Fragiacomo, M., Pampanin, S. & Palermo, A., Multi-storeyprestressed timber buildings in New Zealand. Journal of the International Associationfor Bridge and Structural Engineering, 18(2), pp. 166–173, 2008.https://doi.org/10.2749/101686608784218635

[10] Smith, T., Ponzo, F.C., Di Cesare, A., Pampanin, S., Carradine, S., Buchanan, A.H. &Nigro, D., Post-tensioned glulam beam-column joints with advanced damping systems:testing and numerical analysis, Journal of Earthquake Engineering, 18(1), pp. 147–167,2014.https://doi.org/10.1080/13632469.2013.835291

[11] Smith, T., Ponzo, F.C., Di Cesare, A., Auletta, G., Pampanin, S., Carradine, D., Palermo,A. & Nigro, D., Testing of a post-tensioned glue laminated beam to column joint: experimentaland numerical results. 12th World Conference on Timber Engineering. July 16–19,Auckland, New Zealand, 2012.

[12] EN 1995-1-1 (2004). Design of Timber Structures Part 1-1: General - Common Rulesand Rules for Buildings. European Committee for Standardization.

[13] Di Cesare, A., Ponzo, F.C., Nigro, D., Dolce, M. & Moroni, C., Experimental andnumerical behaviour of hysteretic and visco-recentring energy dissipating bracing systems.Bulletin of Earthquake Engineering, 10(5), pp. 1585–1607, 2012.https://doi.org/10.1007/s10518-012-9363-x

[14] Di Cesare, A., Ponzo, F.C., Simonetti, M., Smith, T. & Pampanin, S., Numerical modellingof a post-tensioned timber framed building with hysteretic energy dissipation. 5thSEMC, Cape Town, South Africa. Taylor & Francis Group, 2013b.

[15] EN 1998-1, Design of structures for earthquake resistance - Part 1: General rules, seismicactions and rules for buildings. European Committee for Standardization, 2003.

[16] Ponzo, F.C., Smith, T., Di Cesare, A., Pampanin, S., Carradine, D. & Nigro, D., Shakingtable testing of a multi-storey post-tensioned glulam building: design and construction,12th World Conference on Timber Engineering, Auckland, New Zealand, 2012.

[17] Kaldjian, M.J., Moment_curvature of beams as Ramberg-Osgood functions. Journalof the Structural Division, American Society of Civil Engineers, 93(ST5), pp. 53–65,1967.

[18] Bouc, R., Forced vibration of mechanical system with hysteresis. 4th Conference onNonlinear Oscillations, Prague, 1967.

[19] Wen, Y.K., Equivalent linearization for hysteretic systems under random excitation.Journal of Applied Mechanics, 47(1), pp. 150–154, 1980.https://doi.org/10.1115/1.3153594

[20] Priestley, M.J., Calvi, G.M. & Kowalsky, M.J., Displacement based seismic design ofstructures, IUSS, Pavia, 2007.

[21] Di Cesare, A., Ponzo, F. C., Nigro, D., Pampanin, S. & Smith, T., Shaking table testingof post-tensioned timber frame building with passive energy dissipation system. Bulletinof Earthquake Engineering, pp. 1–24, 2017.https://doi.org/10.1007/s10518-017-0115-9.