An Extension of the Drift-Flux Model for Submarine Granular Flows

Page:

444-453

DOI:

https://doi.org/10.2495/CMEM-V4-N4-444-453

OPEN ACCESS

Abstract:

To model submarine flows of granular materials we propose an extension of the drift-flux approach. The extended model is able to represent dilute suspensions as well as dense granular flows. The dense granwular flow is modelled as a Herschel–Bulkley fluid, with a yield stress that depends on the dispersed phase pressure. Qualitative numerical experiments show that the model is able to correctly reproduce the stability of submerged sand heaps with different internal angles of friction and initial slopes. When initially starting with heaps with an angle smaller than the internal angle of friction, the heaps are stable. When starting with heaps with angles larger than the internal angle of friction, a flow of solid material is initiated. The flow later stops when the bed is at an angle smaller than the internal angle of friction.

Keywords:

*granular flow, granular pressure, numerical modelling, openFOAM, sand-water mixtures*

References

[1] Mastbergen, D. & Van Den Berg, J., Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology, 50(4), pp. 625–637, 2003. http://dx.doi.org/10.1046/j.1365-3091.2003.00554.x

[2] You, Y., Flemings, P. & Mohrig, D., Dynamics of dilative slope failure. Geology, 40(7), pp. 663–666, 2012. http://dx.doi.org/10.1130/G32855.1

[3] Bisschop, F., Visser, P., van Rhee, C. & Verhagen, H.J., Erosion due to high flow velocities: a description of relevant processes. Proceedings of the International Conference on Coastal Engineering, 1, pp. sediment-24, 2010.

[4] Pailha, M., Nicolas, M. & Pouliquen, O., Initiation of underwater granular avalanches: Influence of the initial volume fraction. Journal of Fluid Mechanics, 20, pp. 115–135, 2008. http://dx.doi.org/10.1063/1.3013896

[5] Pailha, M. & Pouliquen, O., A two-phase flow description of the initiation of underwater granular avalanches. Journal of Fluid Mechanics, 633, pp. 115–135, 2009. http://dx.doi.org/10.1017/S0022112009007460

[6] Iverson, R., Mechanics of debris flows and rock avalanches. In Handbook of Environmental Fluid Dynamics, ed. H. Fernando, Taylor & Francis: Boca Raton, pp. 573–587, 2013.

[7] Lalli, F. & Di Mascio, A., A numerical model for fluid-particle flows. International Journal of Offshore and Polar Engineering, 7(2), 1997.

[8] Lalli, F., Esposito, P., Piscopia, R. & Verzicco, R., Fluid-particle flow simulation by averaged continuous model. Computers & Fluids, 34(9), pp. 1040–1061, 2005. http://dx.doi.org/10.1016/j.compfluid.2004.08.004

[9] Ishii, M. & Hibiki, T., Thermo-Fluid Dynamics of Two-Phase Flow, Springer Science+Business Media, 2005.

[10] GDR, MiDi., On dense granular flows. European Physical Journal E, 14, pp. 341–365, 2004. http://dx.doi.org/10.1140/epje/i2003-10153-0

[11] Jop, P., Forterre, Y. & Pouliquen, O., A constitutive law for dense granular flows. Nature, 441(7094), pp. 727–730, 2006. http://dx.doi.org/10.1038/nature04801

[12] Cassar, C., Nicolas, M. & Pouliquen, O., Submarine granular flows down inclined planes. Physics of Fluids, 17, p. 103301, 2005. http://dx.doi.org/10.1063/1.2069864

[13] Courrech du Pont, S., Gondret, P., Perrin, B. & Rabaud, M., Granular avalanches in fluids. Physical Review Letters, 90, p. 044301, 2003.

[14] Bohorquez, P., Three-phase eulerian mixture formulation for the collapse of densesuspension columns in ambient fluid. Numerical Methods for Hyperbolic Equations: Conference Papers, CRC Press, p. 165, 2012.

[15] Savage, S., Babaei, M. & Dabros, T., Modeling gravitational collapse of rectangular granular piles in air and water. Mechanics Research Communications, 56, pp. 1–10, 2014. http://dx.doi.org/10.1016/j.mechrescom.2013.11.001

[16] Jackson, R., Locally averaged equations of motion for a mixture of identical spherical particles and a newtonian fluid. Chemical Engineering Science, 52(15), pp. 2457–2469, 1997. http://dx.doi.org/10.1016/S0009-2509(97)00065-1

[17] Manninen, M., Taivassalo, V. & Kallio, S., On the mixture model for multiphase flow, 1996.

[18] Richardson, J. & Zaki, W., The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chemical Engineering Science, 3(2), pp. 65–73, 1954. http://dx.doi.org/10.1016/0009-2509(54)85015-9

[19] Van Rhee, C., On the sedimentation process in a trailing suction hopper dredger, Ph.D. thesis, Delft University of Technology, 2002.

[20] Dean, E., Glowinski, R. & Guidoboni, G., On the numerical simulation of bingham visco-plastic flow: old and new results. Journal of Non-Newtonian Fluid Mechanics, 142(1), pp. 36–62, 2007. http://dx.doi.org/10.1016/j.jnnfm.2006.09.002

[21] Doppler, D., Gondret, P., Loiseleux, T., Meyer, S. & Rabaud, M., Relaxation dynamics of water-immersed granular avalanches. Journal of Fluid Mechanics, 577(1), pp. 161–181, 2007. http://dx.doi.org/10.1017/S0022112007004697

[22] Jop, P., Hydrodynamic modeling of granular flows in a modified couette cell. Physical Review E, 77(3), p. 032301, 2008. http://dx.doi.org/10.1103/PhysRevE.77.032301

[23] Lagrée, P., Staron, L. & Popinet, S., The granular column collapse as a continuum: validity of a two-dimensional navier-stokes model with a M (i)-rheology. Journal of Fluid Mechanics, 686(1), pp. 378–408, 2011. http://dx.doi.org/10.1017/jfm.2011.335

[24] Rondon, L., Pouliquen, O. & Aussillous, P., Granular collapse in a fluid: role of the initial volume fraction. Physics of Fluids, 23, p. 073301, 2011. http://dx.doi.org/10.1063/1.3594200

[25] Topin, V., Monerie, Y., Perales, F. & Radjaï, F., Collapse dynamics and runout of dense granular materials in a fluid. Physical Review Letters, 109, p. 188001, 2012. http://dx.doi.org/10.1103/PhysRevLett.109.188001

[26] Zhao, T., Investigation of landslide-induced debris flows by the DEM and CFD, Ph.D. thesis, University of Oxford, 2014.