Experimental Study of the Dynamic Field of Turbulent Premixed Methane/Air Flame using PIV Technique

Experimental Study of the Dynamic Field of Turbulent Premixed Methane/Air Flame using PIV Technique

M.S. Boulahlib M. Chekired M. Benzitouni S. Boukebbab

LITE, University Mentouri Constantine, Algeria

| |
| | Citation



This work is an experimental study of the dynamic fields of a turbulent premixed methane-air flame in a Bunsen burner. The Particle Image Velocimetry (PIV) is used to determine the dynamic fields, and Laser Sheet Tomography (LST) for the flame fronts. The turbulent main jet has a Reynolds number Re = 10 000. Turbulence is generated using perforated grids having three whose provide different inlet turbulence intensities. Velocity fields are measured for various equivalence ratio (F = 0.6–1.3) and different axial flame positions. For the reactive jet, interesting results are obtained concerning the dynamic field and the flame front. It is shown that radial profiles of U and V correspond to the axial positions located before the end of the potential core in the reactive jet. The velocity increases at the jet center to 20 m/s, and is less influenced by turbulent mixing in the flame. The greatest velocity and turbulent kinetic energy are obtained using the grid with the smallest ratio (d/M). Most important values of the radial velocity correspond to the lean flames.


dynamic field, grid turbulence, premixed combustion


[1] Glassman, I., Yetter, R.A. & Glumac, N.G., Chapter 4 - Flame phenomena in premixed combustible gases. Combustion, 5th edn, Academic Press: Cambridge, pp. 147–254, 2015.

[2] Bray, K.N.C., Libby, P.A., Masuya, G. & Moss, J.B., Turbulence production in premixed turbulent flames. Combustion Science and Technology, 25, pp. 127–140, 1981. http://dx.doi.org/10.1080/00102208108547512

[3] Boulahlib, M.S., Renou, B., Taupin, B., Boukhalfa, A. & Nemouchi, Z., Experimental study of the influence of the equivalence ratio and turbulence on CH4-air premix flame in a Bunsen burner using Laser tomography. Sciences et Technologie, Série B, University Mentouri Constantine No. 22B, pp. 65–78, 2004.

[4] Boulahlib, M.S., Chekired, M. & Boukebbab, S., Turbulence effect on lean premixed methane-air flame in a Bunsen burner. WIT Transactions on Ecology and the Environment, 186, pp. 719–725, 2014. http://dx.doi.org/10.2495/ESUS140641

[5] Miles, P.C. & Gouldin, F.C., Mean reaction rates and flamelet statistics for reaction rate modeling in premixed turbulent flames. Proceeding 24th Symposium on Combustion, The Combustion Institute, pp. 477–484, 1992.

[6] Bray, K.N.C., Champion, M. & Libby, P.A., Mean reaction rates in premixed turbulent flames. Proceeding 22th Symposium (international) on Combustion, The Combustion Institute, pp. 763–769, 1988.

[7] Plessing, T., Kortschik, C., Peters, N., Mansour, M.S. & Cheng, R.K., Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner. Proceeding 28th Symposium on Combustion, Combustion Institute, pp. 359–366, 2000. http://dx.doi.org/10.1016/s0082-0784(00)80231-3

[8] Deschamps, B., Etude spatiale et temporelle de la structure dynamique et scalaire des flammes turbulentes de premelange méthane-air, Ph.D thesis, Université d’Orléans, France, 1990.

[9] Fragner, R., Halter, F., Mazellier, N., Chauveau, C. & Gökalp, I., Investigation of pressure effects on the small scale wrinkling of turbulent premixed Bunsen flames. Proceedings of the Combustion Institute, 35(2), pp. 1527–1535, 2015. http://dx.doi.org/10.1016/j.proci.2014.06.036

[10] Armstrong, N.W., Planar Flowfield Measurements in Premixed Turbulent Combustion, Cambridge University, 1992.

[11] Driscoll, J.F., Sutkus, D.J., Roberts, W.M.L., Post, M.E. & Goss, L.P., The strain exerted by a vortex on a flame determined from velocity field images. Combustion Science and Technology, 96, pp. 213–229, 1994. http://dx.doi.org/10.1080/00102209408935356

[12] Frank, J.H., Lyons, K.M. & Long, M.B., Measurement of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV. Combustion and Flame, 107, pp. 1–12, 1996. http://dx.doi.org/10.1016/0010-2180(95)00191-3

[13] Kalt, P.A.M. & Bilger, R.W., Experimental investigation of turbulent scalar flux in premixed stagnation-type flames. Combustion and Flame, 129(4), pp. 401–415, 2002. http://dx.doi.org/10.1016/S0010-2180(02)00354-1

[14] Chen, Y.C. & Bilger, R.W., Detailed measurements of local front structures in stagnation-type turbulent premixed flames. Proceeding of the Combustion Institute, 30, pp. 801–808, 2004. http://dx.doi.org/10.1016/j.proci.2004.08.162

[15] Chekired, M., Nemouchi, Z. & Boulahlib, M.S., Numerical investigation of turbulent premixed methane/air jet flame using peters and williams reduced mechanism. International Journal of Fluid Mechanic Research, 41(1), pp. 31–50, 2014. http://dx.doi.org/10.1615/InterJFluidMechRes.v41.i1.30

[16] Battista, F., Troiani, G. & Picano, F., Fractal scaling of turbulent premixed flame fronts: application to LES. International Journal of Heat and Fluid Flow, 51, pp. 78–87, 2015. http://dx.doi.org/10.1016/j.ijheatfluidflow.2014.08.006

[17] Tamadonfar, P. & Gülder, Ö.L., Flame brush characteristics and burning velocities of premixed turbulent methane/air Bunsen flames. Combustion and Flame, 161(12), pp. 3154–3165, 2014. http://dx.doi.org/10.1016/j.combustflame.2014.06.014

[18] Tamadonfar, P. & Gülder, Ö.L., Effects of mixture composition and turbulence intensity on flame front structure and burning velocities of premixed turbulent hydrocarbon/air Bunsen flames. Combustion and Flame, 162(12), pp. 4417–4441, 2015. http://dx.doi.org/10.1016/j.combustflame.2015.08.009

[19] Tamadonfar, P. & Guilder, Ö.L., Effect of burner diameter on the burning velocity of premixed turbulent flames stabilized on Bunsen-type burners. Experimental Thermal and Fluid Science, 73, pp. 42–48, 2016. http://dx.doi.org/10.1016/j.expthermflusci.2015.09.006

[20] Levent¸iu, C., Renou, B., Da˘ na˘ ila˘ , S. & Isvoranu, D., Accurate measurements and analysis of the thermal structure of turbulent methane/air premixed flame. Energy Procedia, 85, pp. 329–338, 2016. http://dx.doi.org/10.1016/j.egypro.2015.12.259

[21] Maurice, G., Thiesset, F., Halter, F., Mazellier, N., Chauveau, C., Gökalp, I. & Kourta, A., Scale analysis of the flame front in premixed combustion using proper orthogonal decomposition. Experimental Thermal and Fluid Science, 73, pp. 109– 114, 2016. http://dx.doi.org/10.1016/j.expthermflusci.2015.09.030

[22] Boyer, L., Laser tomograhic method for flame front movement studies. Combustion and Flame, 39, pp. 321–323, 1980. http://dx.doi.org/10.1016/0010-2180(80)90028-0

[23] Bingham, D.C., Gouldin, F.C. & Knaus, D.A., Crossed tomography laser-plane direct measurement of the surface flamelet normal. Proceeding 27th (International) Symposium on Combustion, The Combustion Institute, pp. 77–84, 1998. http://dx.doi.org/10.1016/s0082-0784(98)80392-5

[24] Zhang, Y., Chew, T.C. & Bray, K.N.C., Displacement particle image velocimetry, lecture series, Von Karman Institute for Fluid Dynamics, Belgium, 1988.

[25] Borghi, R. & Destriau, M., La combustion et la flamme, edn Technip Paris, pp. 47–48, 1995.

[26] Vagelopoulos, C.M., Egolfopoulos, F.N. & Law, C.K., Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique. Twenty-Fifth Symposium (International) on Combustion, 25, pp. 1341–1347, 1994. http://dx.doi.org/10.1016/s0082-0784(06)80776-9