Modelling Mixed Convection in Laminar Pipe Flow

Modelling Mixed Convection in Laminar Pipe Flow

M.H. Buschmann L. Colla L. Fedele

Institut für Luft- und Kältetechnik Dresden, Dresden, Germany

National Research Council - Institute of Construction Technologies, Padova, Italy

Page: 
311-320
|
DOI: 
https://doi.org/10.2495/CMEM-V4-N3-311-320
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Laminar pipe flow is becoming an important experimental test case for new high efficiency heat carriers like nano- and ferrofluids. Here, a new scaling approach for mixed convection in laminar pipe flow with constant heat flux is proposed. The model relates the radial temperature gradient at the wall, represented as the local Nusselt number, with local Reynolds, Prandtl, and Grashof numbers. The proposed scaling approach is successfully employed to collapse data from different test rigs with horizontally oriented pipes and operated with water. Influences of differing strengths following from free convection are gathered with the new scaling. Moreover, the new scaling approach is successfully utilised to value experimentally obtained heat transfer data of nanofluid flow. In this regard, the impact of nanoparticles, namely the suppression of heat transfer in mixed convection, is experimentally shown and theoretically analysed. Finally, the influence of pipe orientation (vertical / horizontal) is discussed.

Keywords: 

free convection, modelling, nanofluids, pipe flow

  References

[1] Sergis, A. & Hardalupas, Y., Anomalous heat transfer modes of nanofluids: a review based on statistical analysis. Nanoscale Research Letters, 6, pp. 1–37, 2011. http://dx.doi.org/10.1186/1556-276X-6-391

[2] Feja, S. & Buschmann, M.H., Nanofluids – potentials and illusions, Split, Croatia, 12th International Conference on Simulation and Experiments in Heat Transfer and their Applications, Split Croatia, 2012.

[3] Prabhat, N., Buongiorno, J. & Hu, L.W., Convective heat transfer enhancement in nano- fluids: real anomaly or analysis artifacts? Proceedings ASME/JSME 2011 8th AJTEC, Honolulu, Hawaii, USA, 2011. http://dx.doi.org/10.1115/ajtec2011-44020

[4] Colla, L., Fedele, L. & Buschmann, M.H., Laminar mixed convection of TiO2-water nanofluid in horizontal uniformly heated pipe flow. International Journal of Thermal Sciences, 97, pp. 26–40, 2015. http://dx.doi.org/10.1016/j.ijthermalsci.2015.06.013

[5] Colla, L., Fedele, L., Bobbo, S. & Buschmann, M.H., Mixed convection in TiO2-water nanofluids. Fluids, 2015, in press.

[6] Graetz, L., Ueber die Wärmeleitfähigkeit von Flüssigkeiten. Annalen Physik, 18, pp. 79–94, 1883.

[7] Nusselt, W., Die Abhängigkeit der Wärmeübergangszahl von der Rohrlänge. Zeitschrift des Vereins Deutscher Ingenieure, 54, pp.1154–1158, 1910.

[8] Siegel, R., Sparrow, E.M. & Hallman, T.M., Steady laminar heat transfer in a circular tube with prescribed wall heat flux. Applied Science Research, 7, pp. 386–392, 1956.

[9] Hsu, C.J., Heat transfer in a round tube with sinusoidal wall heat flux distribution. American Institute Chemical Engineering Journal, 11, pp. 690–695, 1965. http://dx.doi.org/10.1002/aic.690110423

[10] Buschmann, M.H., Thermal conductivity and heat transfer of ceramic nanofluids. International Journal of Thermal Science, 62, pp. 19–28, 2012. http://dx.doi.org/10.1016/j.ijthermalsci.2011.09.019

[11] Rea, U., McKrell, T., Lin- Hu, L.W. & Buongiorno, J., Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. International Journal of Heat and Mass Transfer, 52, pp. 2042–2048, 2009. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.10.025

[12] Morton, B.R., Laminar convection in uniformly heated horizontal pipes at low Rayleigh number. The Quarterly Journal Mechanics Applied Mathematics, 12, pp. 410–420, 1959. http://dx.doi.org/10.1093/qjmam/12.4.410

[13] van Dyke, M., Extended stokes series: laminar flow through a heated horizontal pipe. Journal of Fluid Mechanics, 212, pp. 289–308, 1990. http://dx.doi.org/10.1017/S0022112090001975

[14] Hieber, C.A. & Sreenivasan, S.K., Mixed convection in an isothermally heated horizontal pipe. International Journal of Heat and Mass Transfer, 17, pp. 1337–1347, 1974. http://dx.doi.org/10.1016/0017-9310(74)90135-5

[15] Colla, L., Fedele, L. & Buschmann, M.H., Laminar mixed convection of TiO2 water nanofluid in horizontal uniformly heated pipe flow. International Journal of Thermal Sciences, 97, pp. 26–40, 2015. http://dx.doi.org/10.1016/j.ijthermalsci.2015.06.013

[16] McEligot, D.M., McCreery, G.E., Schultz, R.R., Lee, J., Hejzlar, P., Stahle, P. & Saha, P., Investigation off thermal-hydraulic phenomena in advanced gas-cooled reactors, INL/EXT-06-11801 MIT-GFR-042, 2006.