A Coupled Numerical Modelling and Experimental Approach in Chemical Vapour Infiltration (CVI) Process of Sic/Sic Composites

A Coupled Numerical Modelling and Experimental Approach in Chemical Vapour Infiltration (CVI) Process of Sic/Sic Composites

E. Schnack A. Li A. M. Rahman Y. Zhu 

Institute of Engineering Mechanics, Karlsruhe Institute of Technology (KIT), Germany

Research Centre for Composite Materials (RCCM), Shanghai University (SHU), China

Division of Solid Mechanics, Lund University, Sweden

| |
| | Citation



Fabrication of silicon carbide fibres reinforced silicon carbide composite (SiC/SiC) by chemical vapour infiltration (CVI) process was investigated in this research with the help of both simulation and experimental set-up. CVI of silicon carbide preform was carried out through the pyrolysis of methyltrichlorosilane (MTS) over a broad temperature range at atmospheric pressure. The overall aim was the morphological description of the matrix (co-deposition of Si, SiC and C) during pyrolysis of MTS by CVI process and its state-of-the-art numerical calculation. Phase-field model was developed and deployed to predict the evolution of the microstructures and to describe the influence of the infiltration conditions on the properties of the composite during CVI process in conjunction with the implication of finite element method. Both mass transport and fluid motion in gas phase were considered. Experimental results exhibit three deposition regimes at different temperature ranges as predicted by the numerical simulation results. This also implies different deposition kinetics involved as investigated in the present research. The great difference of the steady-state deposition rate exceeding three orders of magnitude was explained in terms of a multiple steady-state surface reaction model of co-deposition of SiC, Si and C. Corresponding gas-phase compositions, over the temperature region covered in the present experiments, were calculated with a detailed pyrolysis reaction mechanism of MTS.


chemical engineering, chemical vapour infiltration, composite, phase field, simulation


[1] Leuchs, M., Chemical vapour infiltration processes for ceramic matrix composites: manufacturing properties (Chapter 9), Ceramic matrix composites, ed. W. Krenkel, Wiley-Weinheim, Germany, pp. 141–164, 2008.

[2] Golecki, I., Rapid vapour phase densification of refractory composites. Materials Science and Engineering R, 37, pp. 118–124, 1997. doi: http://dx.doi.org/10.1016/ s0927-796x(97)00003-x

[3] Lamon, J., Chemical vapour infiltrated SiC/SiC composites (CVI SiC/SiC), Handbook of ceramic composites , ed. N. Bansal, Kluwer Academic Publishers, Boston, pp. 55–76, 2005. doi: http://dx.doi.org/10.1007/0-387-23986-3_3

[4] Delhaes, P., Review – chemical vapour deposition and infiltration processes of carbon materials, Carbon, 40(5), pp. 641–657, 2002. doi: http://dx.doi.org/10.1016/s0008-6223(01)00195-6

[5] Amirthan, G., Udayakumar, A., Bhanu, P.V.V. & Balasubramanian, M., Properties of Si/ SiC ceramic composite subjected to chemical vapour infiltration. Ceramic Internation- al, 35(7), pp. 2601–2607, 2009. doi: http://dx.doi.org/10.1016/j.ceramint.2009.02.022

[6] Naslain, R.R., Langlais, F., & Fedou, R., The CVI – processing of ceramic matrix com- posites. Journal of Physics, 50(C5), pp. 191–207, 1989. doi: http://dx.doi.org/10.1051/ jphyscol:1989526

[7] Naslain, R.R., Material design and processing of high temperature ceramic matrix com- posites: state of the art and future trends, Advance Composite Materials, 8(1), pp. 3–16, 1999. doi: http://dx.doi.org/10.1163/156855199x00029

[8] Buckley J.D., Carbon–carbon, an overview. American Ceramic Society Bulletin, 67(2), pp. 364–368, 1988.

[9] Manocha, L.M. & Pande, R., Growth of carbon nanotubes on silicon carbide fabric as reinforcement for SiC/C composites. Journal of Nanoscience and Nanotechnology, 10(6), pp. 3822–3827, 2010. doi: http://dx.doi.org/10.1166/jnn.2010.1968

[10] Sauder, C., Brusson, A. & Lamon, J, Mechanical properties of Hi-NicalonS and SA3 fibre reinforced SiC/SiC minicomposites. International Journal of Applied Ceramic Technology, 7(3), pp. 291–303, 2010. doi: http://dx.doi.org/10.1002/9780470456361. ch9

[11] Yan, Z.Q., Chen, F., Xiong, X., Xiao, P., Zhang, H.B. & Huang, B.Y., Oxidation behav- iour of CVI, MSI and CVI+MSI C/SiC composites. Transactions of Nonferrous Met- als Society of China, 20(4), pp. 590–596, 2010. doi: http://dx.doi.org/10.1016/s1003- 6326(09)60183-7

[12] Petrak, D.R., Ceramic matrices, Composites, ASM Handbook, ed. D.B. Miracle & S.L. Donaldson, Vol. 21, ASM International, USA, pp. 160–163, 2001.

[13] Bang, K.-H., Chung, G.-Y. & Koo, H.-H., Preparation of C/C composites by the chemi- cal vapours infiltration (CVI) of propane pyrolysis. Korean Journal of Chemical Engi- neering, 28(1), pp. 272–278 2011. doi: http://dx.doi.org/10.1007/s11814-010-0352-y

[14] Guan, K., Laifei, C., Qingfeng, Z., Hui, L., Shanhua, L., Jianping, L. & Litong, Z., Prediction of permeability for chemical vapour infiltration. Journal of the American Ce- ramic Society, 96(8), pp. 2445–2453, 2010. doi: http://dx.doi.org/10.1111/jace.12456

[15] Pedersen, H., Leone, S., Henry, A., Beyer, F.C., Darakchieva, V. & Janzén, E., Very high growth rate of 4H-SiC epilayers using the chlorinated precursor methyltrichlorosi- lane (MTS). Journal of Crystal Growth, 307(2), pp. 334–340, 2007. doi: http://dx.doi. org/10.1016/j.jcrysgro.2007.07.002

[16] Schnack, E., Wang, F.W. & Li, A.J., Phase-field model for the chemical vapour infiltra- tion of silicon carbide. Journal of the Electrochemical Society, 157(7), pp. 377–386, 2010. doi: http://dx.doi.org/10.1149/1.3409493

[17] Kulik, V.I., Kulik, A.V., Ramm, M.S. & Makarov, Y.N., Modelling of SiC–matrix com- posite formation by isothermal chemical vapour infiltration. Journal of Crystal Growth, 266(1-3), pp. 333–339, 2004. doi: http://dx.doi.org/10.1016/j.jcrysgro.2004.02.063

[18] Zhu, Y., Schnack, E. & Li, A.J., Multiphase field modelling chemical vapour infiltration of SiC/SiC composite. Proceedings in Applied Mathematics and Mechanics, 11(1), pp. 453–454, 2011. doi: http://dx.doi.org/10.1002/pamm.201110218

[19] Zhu, Y. & Schnack, E., Modelling manufacture process of light weight SiC/SiC com- posites. Proceedings in International Symposium on Advances in Applied Mechanics and Modern Information Technology, MIT11, pp. 283–287, 2011.

[20] Barbato, A. & Cavallotti, C., Challenges of introducing quantitative elementary reac- tions in multiscale models of thin film deposition. Physica Status Solidi (B), 247(9), pp. 2127–2146, 2010. doi: http://dx.doi.org/10.1002/pssb.200945454

[21] Kulik, V.I., Kulik, A.V., Ramm, M.S., Nilov, A.S. & Bogdanov, M.V., Two-dimensional model of conjugate heat and mass transport in the isothermal chemical vapour infil- tration of 3D preform by SiC matrix. Silicon Carbide and Related Materials, 483, pp. 245–250, 2005. doi: http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.245

[22] Vignoles, G.L., Modelling of the CVI processes. Advances in Science and Technology, 50, pp. 97–106, 2006. doi: http://dx.doi.org/10.4028/www.scientific.net/ast.50.97

[23] Zhu, Y., Schnack, E. & Iancu, G., Modelling chemical vapour infiltration of SiC com- posites. Proceedings in TMCE 2012, 2, pp. 787–796, 2012.

[24] Zhang, W.G. & Hüttinger, G.K., Chemical vapour deposition of SiC from ethyltrichlo- rosilane, part-II: composition of the gas phase and the deposit. Advanced Materials of CVD, 7, pp. 173–181, 2001.

[25] Allendorf, M.D. & Melius, C.F., Theoretical study of thermochemistry of molecules in the silicon–carbon–chlorine–hydrogen system. Journal of Physical Chemistry, 97, pp. 720–728, 1993. doi: http://dx.doi.org/10.1021/j100105a031

[26] Fitzer, E. & Kehr, D., Carbon, carbide and silicide coatings. Thin Solid Films, 39, pp. 55–57, 1976.

[27] Schnack, E., 3D simulation of the manufacturing process for composites with a SiC- matrix, Final Report-project DFG Schn245/31, Karlsruhe Institute of Technology (KIT), Germany.

[28] Chase, M.W., Nist-janaf thermochemical tables. Journal of Physical Chemistry  Data,9, pp. 1–1951, 1998.

[29] Gurvich, L.V., Veyts, I.V. & Alcock, C.B., Thermodynamic properties of individual sub- stances, Hemisphere Publishing, USA, 1989.

[30] Zhu, Y. & Schnack, E., Numerical modelling chemical vapour infiltration of SiC composites. Journal of Chemistry, 2013, pp. 1–11, 2013. doi: http://dx.doi.org/ 10.1155/2013/836187

[31] Eggleston, J.J., McFaddenand, G.B. &. Voorhees, P.W., A phase-field model for highly anisotropic interfacial energy. Physica D, 150, pp. 91–103, 2001. doi: http://dx.doi. org/10.1016/s0167-2789(00)00222-0

[32] Schnack, E., Wang, F.W., Langhoff, T.-A. & Li, A. J., Modelling and simulation of composites in the design process, 7th International Symposium on Tools and Methods in Competitive Engineering, 2008.

[33] Wang, F.W., Schnack, E. & Zhu, Y., Discontinuous Galerkin solution of phase-field model in isothermal chemical vapour infiltration of SiC. Journal of Engineering Math- ematics, 78(1), pp. 261–274, 2013. doi: http://dx.doi.org/10.1007/s10665-011-9494-0

[34] Zhu, Y., Schnack, E. & Iancu, G., Microstructure simulation in isothermal chemical vapour infiltration of SiC composites. International Journal of Information Technol- ogy and Management, 13(2-3), pp. 202–215, 2013. doi: http://dx.doi.org/10.1504/ ijitm.2014.060303

[35] Beckermann, C., Dipers, H.J., Steinbach, I., Karma, A. & Tong, X., Modelling melt convection in phase-field simulations of solidification. Journal of Computation Physics, 154, pp. 468–159, 1999. doi: http://dx.doi.org/10.1006/jcph.1999.6323

[36] Beck, T.L., Real-space mesh techniques in density-functional theory. Reviews of Modern Physics, 72(4), pp. 1041–1080, 2000. doi: http://dx.doi.org/10.1103/revmod- phys.72.1041

[37] Benjeddou, A., Advances in piezoelectric finite element modelling of adaptive struc- tural elements: a survey. Computers & Structures, 76(1-3), pp. 347–363, 2000. doi: http://dx.doi.org/10.1016/s0045-7949(99)00151-0

[38] Liu, G.R. & Gu, Y.T., A point interpolation method for two-dimensional solids. Inter- national Journal for Numerical Methods in Engineering, 50(4), pp. 937–951, 2001. doi: http://dx.doi.org/10.1002/1097-0207(20010210)50:4<937::aid-nme62>3.0.co;2-x

[39] Shenoy, V.B., Miller, R., Tadmor, E.B., Rodney, D., Phillips, R. & Ortiz, M., An adap- tive finite element approach to atomic-scale mechanics – the quasicontinuum method. Journal of the Mechanics and Physics of Solids, 47(3), pp. 611–642, 1999. doi: http:// dx.doi.org/10.1016/s0022-5096(98)00051-9

[40] Strouboulis, T., Copps, K. & Babuska, I., The generalized finite element method. Com- puter Methods in Applied Mechanics and Engineering, 190(32-33), pp. 4081–4193, 2001.

[41] Gong, J., Phase-field modelling ICVI process of SiC with h-adaptive FEM, Internship Report, Karlsruhe Institute of Technology (KIT), Germany, 2010.

[42] Lazzeri, A., Composites processing methods (Chapter 9). CVI Processing of Ceramic Matrix Composites, eds. N.P. Bansal & A.R. Boccaccini, John Wiley & Sons, Inc., New York, NY, pp. 313–339, 2012.

[43] Papasouliotis, G.D. & Sotirchos, S.V., Hydrogen chloride effects on the CVD of sili- con carbide from methyltrichlorosilane. Chemical Vapour Deposition, 4–6, pp. 235– 246, 1998. doi: http://dx.doi.org/10.1002/(sici)1521-3862(199812)04:06<235::aid- cvde235>3.0.co;2-r

[44] Sotirchos, S.V. & Papasouliotis G.D., Experimental study of atmospheric pressure chemical vapour deposition of silicon carbide from methyltrichlorosilane. Jour- nal of Materials Research, 14, pp. 3397–3409, 1999. doi: http://dx.doi.org/10.1557/ jmr.1999.0460