Evaluation of Models of the Effective Thermal Conductivity of Porous Materials Relevant to Fuel Cell Electrodes

Evaluation of Models of the Effective Thermal Conductivity of Porous Materials Relevant to Fuel Cell Electrodes

B. Sundén J. Yuan

Department of Energy Sciences, Lund University, Lund, Sweden

Page: 
440-455
|
DOI: 
https://doi.org/10.2495/CMEM-V1-N4-440-455
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Small scale solid particles with fluid-filled pores are applied in various porous structures in energy systems, such as fuel cells, for the objectives to enhance the catalytic reaction activities and improve the fuel utilization efficiency or/and reduce the pollutants. In addition to the catalytic reactions, heat transfer processes in fuel cell porous electrodes are strongly affected by the small scale and complex porous structures. In this paper, the thermal energy equation commonly used for continuum models at porous-averaging level is highlighted, with the purpose to provide a general overview of the validity and limiting conditions for its application. Models for effective thermal conductivity are reviewed and discussed. It is found that both the rarefaction and tortuosity effects on reduction of effective thermal conductivity may be significant, and these should be evaluated based on detailed information of operating parameters, pore size distributions and topologic structures. Comments and suggestions are presented for the better understanding and implementation of the continuum heat transfer models for fuel cell electrodes.

Keywords: 

Catalytic reaction, effective thermal conductivity, heat transfer, Knudsen number, modeling, multi-phase flow

  References

[1] Matine, A., Boyard, N., Cartraud, P., Legrain G. & Jarny, Y., Thermal properties of composite materials: Effective conductivity tensor and edge effects. 6th European Thermal Sciences Conference, 4–7 September 2012, France.

[2] Pabst, W. & Gregorová, E., The sigmoidal average-a powerful tool for predicting the thermal conductivity of composite ceramics. 6th European Thermal Sciences Conference, 4–7 September 2012, France.

[3] Wang, Y., Chen, K.S., Mishler, J., Cho S.C. & Adroher, X.C., A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88, pp. 981–1007, 2011. doi: http://dx.doi.org/10.1016/j.apenergy.2010.09.030

[4] Mukherjee, P.P., Kang, Q. & Wang, C.Y., Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells–progress and perspective. Energy & Environmental Science, 4, pp. 346–369, 2011. doi: http://dx.doi.org/10.1039/b926077c

[5] Yan, Q. and Wu, J., Modeling of single catalyst particle in cathode of PEM fuel cells. Energy Conversion and Management, 49, pp. 2425–2433, 2008. doi: http://dx.doi.org/10.1016/j.enconman.2008.01.021

[6] Xiao, Y., Dou, M., Yuan, J., Hou, M., Song W. & Sundén, B., Fabrication process simulation of a PEM fuel cell catalyst layer and its microscopic structure characteristics. Journal of the Electrochemical Society, 159, pp. B308–B314, 2012. doi: http://dx.doi.org/10.1149/2.064203jes

[7] Xiao, Y., Yuan, J. & Sundén, B., Process Based Large Scale Molecular Dynamic Simulation of a Fuel Cell Catalyst Layer. Journal of the Electrochemical Society, 159(3), pp. B251–B258, 2012. doi: http://dx.doi.org/10.1149/2.028203jes

[8] Andreaus, B. & Eikerling, M., Catalyst layer operation in PEM fuel cells: From structural pictures to tractable models. Device and Materials Modeling in PEM Fuel Cells, eds. S.J. Paddison, & K.S. Promislow, Springer Science: New York, NY, USA, pp. 41–90, 2009.

[9] Moore, K.L. & Reeves, K.S., Microstructural characterization of PEM fuel cell MEAs. DOE Hydrogen Program Annual Merit Review Proceedings, Arlington, VA, USA, May 23–26, 2005.

[10] Xiao, Y., Yuan, J. & Sundén, B., Review on the properties of nano-/micro- structures in the catalyst layer of PEMFC. ASME Journal of Fuel Cell Science and Technology, 8, pp. 1–13, 2011.

[11] Jiao K. & Li, X., Water transport in polymer electrolyte membrane fuel cells. Progress in Energy and Combustion Science, 37, pp. 221–291, 2011. doi: http://dx.doi.org/10.1016/j.pecs.2010.06.002

[12] Yuan, J. & Sundén, B., Two-Phase fl ow analysis in a cathode duct of PEFCs. Electrochimica Acta, 50, pp. 677–683, 2004. doi: http://dx.doi.org/10.1016/j.electacta.2004.01.118

[13] Yuan, J., Sundén, B., Hou, M. & Zhang, H., Three-Dimensional analysis of two-phase flow and its effects on the cell performance of PEMFCs. Numerical Heat Transfer (Part A), 46, pp. 669–694, 2004. doi: http://dx.doi.org/10.1016/j.electacta.2004.01.118

[14] Khan, M., Sundén, B. & Yuan, J., Analysis of multi-phase transport phenomena with catalyst reactions in PEMFC-a review. Journal of Power Sources, 196, pp. 7899–7916, 2011. doi: http://dx.doi.org/10.1016/j.jpowsour.2011.04.040

[15] Date, A.W., Introduction to Computational Fluid Dynamics, Cambridge University Press: New York, USA, 2005. doi: http://dx.doi.org/10.1017/CBO9780511808975

[16] Versteeg, H.K. & Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, 2nd edn., Pearson Education Limited: Essex, England, 2007.

[17] Cecen, A., Wargo, E.A., Hanna, A.C., Turner, D., Kalidindi, S.R. & Kumbur, E.C., 3-Dmicrostructure analysis of fuel cell materials: Spatial distributions of tortuosity, void size, and diffusivity. Journal of the Electrochemical Society, 159, pp. B1–B9, 2012.

[18] Andersson, M., Yuan, J., Sundén, B. & Wang, W.G., LTNE Approach and Simulation for Anode-Supported SOFCs, ASME FuelCell2009-85054, USA, 2009. doi: http://dx.doi.org/10.1016/j.apenergy.2009.11.013

[19] Andersson, M., Yuan, J. & Sundén, B., Review on modeling development for multiscale chemical-reactions-coupled transport phenomena in SOFCs. Applied Energy, 87(5), pp. 1461–1476, 2010.

[20] Berson, A., Choi, H.W. & Pharoah, J.G., Determination of the effective gas diffusivity of a porous composite medium from the three-dimensional reconstruction of its microstructure. Physical Review E, 83, p. 026310, 2011. doi: http://dx.doi.org/10.1103/PhysRevE.83.026310

[21] Ichikawa, Y. & Selvadurai, A.P.S., Transport Phenomena in Porous Media, Springer-Verlag Berlin Heidelberg: Berlin, Germany, 2012.

[22] Delgado, J.M.P.Q., Heat and Mass Transfer in Porous Media, Springer-Verlag Berlin Heidelberg: Berlin, Germany, 2012.

[23] Jiang, P.X. & Lu, X.C., Numerical simulation of fl uid fl ow and convection heat transfer in sintered porous plate channels. International Journal of Heat and Mass Transfer, 49, pp. 1685–1695, 2006. doi: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.10.026

[24] Zehener, P., Thermal conductivity of granular materials at moderate temperatures. C hemie Ingenieur Technik, 42, pp. 933–941, 1970.

[25] Haussener, S., Coray, P., Lipiński, W., Wyss, P. & Steinfeld, A., Tomography-Based heat and mass transfer characterization of reticulate porous ceramics for high- temperature processing. ASME Journal of Heat and Mass Transfer, 132(2), p. 023305-1, 2010. doi: http://dx.doi.org/10.1115/1.4000226

[26] Bodla, K.K., Murthy, J.Y. & Garimella, S.V., Direct simulation of thermal transport through sintered wick microstructures. ASME Journal of Heat and Mass Transfer, 134(1), p. 012602, 2012. doi: http://dx.doi.org/10.1115/1.4004804

[27] Carson, J.K., Lovatt, S.J., Tanner, D.J. & Cleland, A.C., Thermal conductivity bounds for isotropic, porous materials. International Journal of Heat and Mass Transfer, 48(11), pp. 2150–2158, 2005. doi: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.12.032

[28] Wang, J., Carson, J.K., North, M.F. & Cleland, D.J., A new approach to modelling the effective thermal conductivity of heterogeneous materials. International Journal of Heat and Mass Transfer, 49, pp. 3075–3083, 2006. doi: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.02.007

[29] Hashin, Z. & Shtrikman, S., A variational approach to the theory of the effective magnetic permeability of multiphase materials. Journal of Applied Physics, 33, pp. 3125– 3131, 1962. doi: http://dx.doi.org/10.1063/1.1728579

[30] Coquard, R. & Quenard, D., Modeling of Heat Transfer in Nanoporous Silica-Infl uence of Miosture. 8th Int. Vacuum Insulation Sym., 18th–19th September 2007, Würzburg, Germany.

[31] Griesinger, A., Spindler, K. & Hahne, E., Measurements and theoretical modeling of the effective thermal conductivity of zeolites. International Journal of Heat and Mass Transfer, 42(23), pp. 4363–4374, 1999. doi: http://dx.doi.org/10.1016/S0017-9310(99)00096-4

[32] Vivet, N., Chupin, S., Estrade, E., Piquero, T., Pommier, P.L., Rochais, D. & Bruneton, E., 3D microstructural characterization of a solid oxide fuel cell anode reconstructed by focused ion beam tomography. Journal of Power Sources, 196, pp. 7541–7549, 2011. doi: http://dx.doi.org/10.1016/j.jpowsour.2011.03.060

[33] Nikooee, E., Karimi, G. & Li, X., Determination of the effective thermal conductivity of gas diffusion layers in polymer electrolyte membrane fuel cells: A comprehensive fractal approach. International Journal of Energy Research, 35, pp. 1351–1359, 2011. doi: http://dx.doi.org/10.1002/er.1896

[34] Khandelwal, M. & Mench, M.M., Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials. Journal of Power Sources, 161, pp. 1106–1115, 2006. doi: http://dx.doi.org/10.1016/j.jpowsour.2006.06.092

[35] Sadeghi, E., Djilali, N. & Bahrami, M., A novel approach to determine the in-plane thermal conductivity of gas diffusion layers in proton exchange membrane fuel cells. Journal of Power Sources, 196, pp. 3565–3571, 2011. doi: http://dx.doi.org/10.1016/j.jpowsour.2010.11.151

[36] Sadeghi, E., Djilali, N. & Bahrami, M., Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 1: Effect of compressive load. Journal of Power Sources, 196, pp. 246–254, 2011. doi: http://dx.doi.org/10.1016/j.jpowsour.2010.06.039

[37] Chaudhary, D.R. & Bhandari, R.C., Heat transfer through a three-phase porous medium. Journal of Physics D (British Journal of Applied Physics), 1, pp. 815–817, 1968. doi: http://dx.doi.org/10.1088/0022-3727/1/6/418

[38] Wang, M., Kang, Q. & Pan, N., Thermal conductivity enhancement of carbon fi ber composites. Applied Thermal Engineering, 29(2), pp. 418–421, 2009. doi: http://dx.doi.org/10.1016/j.applthermaleng.2008.03.004

[39] Wang, M. & Pan, N., Predictions of effective physical properties of complex multiphase materials. Materials Science and Engineering: R: Reports, 63(1), pp. 1–30, 2008. doi: http://dx.doi.org/10.1016/j.mser.2008.07.001