OPEN ACCESS
Microstructural fatigue initiation in Al-Sn-Si-Cu-Ni bearing lining alloys is reported and investigated. The secondary phases of such alloys comprise fine and relatively few Sn and Si particles as well as a large number of hard AlNi3-type intermetallics, frequently encapsulated within soft Sn layers. During fatigue tests, these particles were observed to initiate short fatigue cracks. Through elasto-plastic finite element analysis of ideal microstructures but with realistic geometric and mechanical property data, critical values of key stress and strain components within the matrix, the Sn layers, and the particles were predicted and linked to microstructural features associated with observed fatigue initiation. These modelling results indicate the extent to which either the hydrostatic stresses or plastic shear strains may be responsible for fatigue crack initiation in the Sn layers, as well as the optimum microstructural characteristics that would minimise tensile stresses, which are responsible for brittle particle fracture.
Aluminium alloys, bearing linings, fatigue initiation, micromechanics, plasticity, secondary phases
[1] Blount, E.A., Design factors infl uencing the fatigue resistance of connecting-rod big-end bearings. Proceedings of the Institution of Mechanical Engineers, 175(10), pp. 513–527, 1961. doi: http://dx.doi.org/10.1243/PIME_PROC_1961_175_037_02
[2] Mwanza, M.C., Joyce, M.R., Lee, K.K., Syngellakis, S. & Reed, P.A.S., Microstructural characterisation of fatigue crack initiation in Al-based plain bearing alloys. International Journal of Fatigue, 25(9–11), pp. 1135–1145, 2003. doi: http://dx.doi.org/10.1016/S0142-1123(03)00148-8
[3] Ali, M.S., Reed, P.A.S. & Syngellakis, S., Comparison of fatigue performance of HVOF spray coated and conventional roll bonded aluminium bearing alloys. Materials Science and Technology, 25(5), pp. 575–581, 2009. doi: http://dx.doi.org/10.1179/174328408X322213
[4] Kim, W.H. & Laird, C., Crack nucleation and stage-I propagation in high strain fatigue. 2. mechanism. Acta Metallurgica, 26(5), pp. 789–799, 1978. doi: http://dx.doi.org/10.1016/0001-6160(78)90029-9
[5] Bowles, C.Q. & Schijve, J., Role of inclusions in fatigue crack initiation in an Aluminum-alloy. International Journal of Fracture, 9(2), pp. 171–179, 1973. doi: http://dx.doi.org/10.1007/BF00041859
[6] Christian, K.D. & German, R.M., Relation between pore structure and fatigue behavior in sintered Iron-Copper-Carbon. International Journal of Powder Metallurgy, 31(1), pp. 51–61, 1995.
[7] Kung, C.Y. & Fine, M.E., Fatigue crack initiation and microcrack growth in 2024-T4 and 2124-T4 Aluminum-alloys. Metallurgical Transactions A-Physical Metallurgy and Materials Science, 10(5), pp. 603-610, 1979. doi: http://dx.doi.org/10.1007/BF02658324
[8] Couper, M.J., Neeson, A.E. & Griffi ths, J.R., Casting defects and the fatigue behavior of an Aluminum casting alloy. Fatigue & Fracture of Engineering Materials & Structures, 13(3), pp. 213–227, 1990. doi: http://dx.doi.org/10.1111/j.1460-2695.1990.tb00594.x
[9] Joyce, M.R., Lee, K.K., Syngellakis, S. & Reed, P.A.S., Quantitative assessment of preferential fatigue initiation sites in a multi-phase aluminium alloy. Fatigue & Fracture of Engineering Materials & Structures, 27(11), pp. 1025–1036, 2004. doi: http://dx.doi.org/10.1111/j.1460-2695.2004.00815.x
[10] Ali, M.S., Reed, P.A.S., Syngellakis, S., Moffat, A. & Perrin, C., Microstructural factors affecting fatigue initiation in various Al based bearing alloys. Materials Science Forum, 519–521, pp. 1071–1076, 2006. doi: http://dx.doi.org/10.4028/www.scientifi c.net/MSF.519-521.1071
[11] Eshelby, J.D., The determination of the elastic fi eld of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society of London, A241, pp. 376–396, 1957. doi: http://dx.doi.org/10.1098/rspa.1957.0133
[12] Boselli, J., Pitcher, P.D., Gregson, P.J. & Sinclair, I., Secondary phase distribution analysis via fi nite body tessellation. Journal of Microscopy-Oxford, 195, pp. 104–112, 1999. doi: http://dx.doi.org/10.1046/j.1365-2818.1999.00483.x
[13] Nutt, S.R. & Duva, J.M., A failure mechanism in Al-SiC composites. Scripta Metallurgica, 20(7), pp. 1055–1058, 1986. doi: http://dx.doi.org/10.1016/0036-9748(86)90435-7
[14] Nutt, S.R. & Needleman, A., Void nucleation at fi ber ends in Al-SiC composites. Scripta Metallurgica, 21(5), pp. 705–710, 1987. doi: http://dx.doi.org/10.1016/0036-9748(87)90389-9
[15] Christman, T., Needleman, A. & Suresh, S., An experimental and numerical study of deformation in metal ceramic composites. Acta Metallurgica, 37(11), pp. 3029–3050, 1989. doi: http://dx.doi.org/10.1016/0001-6160(89)90339-8
[16] Whitehouse, A.F. & Clyne, T.W., Critical stress criteria for interfacial cavitation in MMCs. Acta Metallurgica Et Materialia, 43(5), pp. 2107–2114, 1995. doi: http://dx.doi.org/10.1016/0956-7151(94)00375-R
[17] Hardiman, N.J., Elliptic elastic inclusion in an infi nite elastic plate. Quarterly Journal of Mechanics and Applied Mathematics, 7(2), pp. 226–230, 1954. doi: http://dx.doi.org/10.1093/qjmam/7.2.226
[18] MatWeb Material Property Data, available at http://www.matweb.com/search/ PropertySearch.aspx
[19] Shi, D., Wen, B., Melnik, R., Yao, S. & Lia, T., First-principles studies of Al-Ni intermetallic compounds. Journal of Solid State Chemistry, 182(10), pp. 2664–2669, 2009. doi: http://dx.doi.org/10.1016/j.jssc.2009.07.026
[20] Ali, M.S., Microstructural Modelling of Fatigue in Layered Bearing Architectures, PhD Thesis, University of Southampton, 2007.
[21] ANSYS, Inc., ANSYS Academic Research, Canonsburg, PA 15317, available at www. ansys.com
[22] Starink, M.J. & Syngellakis, S., Shear lag models for discontinuous composites: fi bre end stresses and weak interface layers. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 270(2), pp. 270–277, 1999. doi: http://dx.doi.org/10.1016/S0921-5093(99)00277-4