OPEN ACCESS
A computational approach based on electron backscatter diffraction (EBSD) measurement was proposed to estimate the effects of crystal morphology on the overall response of polycrystalline piezoelectric ceramics. EBSD-measured crystal orientations of a polycrystalline piezoelectric ceramic, barium titanate, were applied to a multiscale finite element simulation based on asymptotic homogenization theory. First, the orientation dependence of material properties, such as elastic compliance constants, dielectric and piezoelectric strain constants, was discussed for a single-domain crystal of tetragonal perovskite structure. The computation indicated that piezoelectric strain constants are more sensitive to crystal orientation compared with other properties. Then the single-crystalline material properties were introduced into multidirectionally oriented grains in the polycrystalline microstructure, the multiscale finite element analysis between macrostructure and EBSD-measured microstructure was performed. In this paper emphasis was placed on the diminution of microstructure. The authors discussed about the adverse effect on each component of macrostructural homogenized material properties, which is useful for micromechanics approaches.
EBSD, homogenization, multiscale simulation, piezoelectric material, polycrystalline
[1] Venables, J. & Harland, C., Electron back scattering patterns – A new techniquefor obtaining crystallographic information in the scanning electron microscope.Philosophical Magazine, 27, pp.1193–1200, 1973. doi: http://dx.doi.org/10.1080/14786437308225827
[2] Dingley, D. & Randel, V., Microstructure determination by electron back-scatterdiffraction. Journal of Material Science, 27, pp. 4545–4566, 1992. doi: http://dx.doi.org/10.1007/BF01165988
[3] Yang, L.C., Dumler, I. & Wayman, C.M., Studies of herringbone domain structures inlead titanate by electron back-scattering patterns. Materials Chemistry and Physics, 36,pp. 282–288, 1994. doi: http://dx.doi.org/10.1016/0254-0584(94)90043-4
[4] Koblischka-Veneva, A. & Mücklich, F., Orientation imaging microscopy appliedto BaTiO3 ceramics. Crystal Engineering, 5, pp. 235–242, 2002. doi: http://dx.doi.org/10.1016/S1463-0184(02)00034-5
[5] Reichmanna, A., Zankela, A., Reingrubera, H., Pölta, P. & Reichmann, K., Directobservation of ferroelectric domain formation by environmental scanning electronmicroscopy. Journal of the European Ceramic Society, 31, pp. 2939–2942, 2011. doi:http://dx.doi.org/10.1016/j.jeurceramsoc.2011.05.043
[6] Tai, C.W., Baba-kishi, K.Z. & Wong, K.H., Microtexture characterization of PZTceramics and thin fi lms by electron microscopy. Micron, 33, pp. 581–586, 2002. doi:http://dx.doi.org/10.1016/S0968-4328(02)00016-1
[7] Okayasua, M., Satoa, K. & Kusaba, Y., Domain switching characteristics of leadzirconate titanate piezoelectric ceramics during mechanical compressive loading.Journal of the European Ceramic Society, 31, pp. 129–140, 2011. doi: http://dx.doi.org/10.1016/j.jeurceramsoc.2010.09.001
[8] Faryna, M., Sztwiertnia, K. & Sikorski, K., Simultaneous WDXS and EBSDinvestigations of dense PLZT ceramics. Journal of the European Ceramic Society, 26,pp. 2967–2971, 2006. doi: http://dx.doi.org/10.1016/j.jeurceramsoc.2006.02.013
[9] Samardžija, Z., Jeon, J.H. & eh, M., Microstructural and compositional study of a bulkPb(Mg1/3Nb2/3)O3–PbTiO3 single crystal grown from a BaTiO3 seed. Materials Characterization,58, pp. 534–543, 2007. doi: http://dx.doi.org/10.1016/j.matchar.2006.10.003
[10] Koblischka, M.R., Koblischka-Veneva, A., Wicka, M., Mitoseriuc, L. & Hartmann, U.,Microstructure and magnetic properties of BaTiO3–(Ni,Zn)Fe2O4 multiferroics. ThinSolid Films, 518, pp. 4730–4733, 2010. doi: http://dx.doi.org/10.1016/j.tsf.2009.12.070
[11] Wu, P.D., Lloyd, D.J., Bosland, A., Jin, H. & MacEwen, S.R., Analysis of roping inAA6111 automotive sheet. Acta Materialia, 51, pp. 1945–1957, 2003. doi: http://dx.doi.org/10.1016/S1359-6454(02)00600-6
[12] Nakamachi, E., Tam, N.N. & Morimoto, H., Multi-scale fi nite element analyses ofsheet metals by using SEM-EBSD measured crystallographic RVE models. InternationalJournal of Plasticity, 23, pp. 450–489, 2007. doi: http://dx.doi.org/10.1016/j.ijplas.2006.06.002
[13] Marutake, M., A calculation of physical constants of ceramics barium titanate, Journalof the Physical Society of Japan, 11, pp. 807–814, 1956. doi: http://dx.doi.org/10.1143/JPSJ.11.807
[14] Olson, T. & Avellaneda, M., Effective dielectric and elastic constants of piezoelectricpolycrystals. Journal of Applied Physics, 71, pp. 4455–4464, 1992. doi: http://dx.doi.org/10.1063/1.350788
[15] Dunn, M.L., Effects of grain shape anisotropy, porosity, and microcracks on the elasticand dielectric constants of polycrystalline piezoelectric ceramics. Journal of AppliedPhysics, 78, pp. 1533–1542, 1995. doi: http://dx.doi.org/10.1063/1.360246
[16] Li, J.Y., The effective electroelastic moduli of textured piezoelectric polycrystallineaggregates. Journal of the Mechanics and Physics of Solids, 48, pp. 529–552, 2000. doi:http://dx.doi.org/10.1016/S0022-5096(99)00042-3
[17] Wu, C.P., Chiu, K.H. & Jiang, R.Y., A meshless collocation method for the coupledanalysis of functionally graded piezo-thermo-elastic shells and plates under thermalloads. International Journal of Engineering Science, 56, pp. 29–48, 2012. doi: http://dx.doi.org/10.1016/j.ijengsci.2012.03.001
[18] Nguyen-Vinh, H., Baker, I., Msekh, M.A., Song, J.H., Muthu, J., Zi, G., Le, P.,Bordas, S.P.A., Simpson, R., Natarajan, S., Lahmer, T. & Rabczuk, T., Extendedfi nite element method for dynamic fracture of piezo-electric materials. EngineeringFracture Mechanics, 92, pp. 19–31, 2012. doi: http://dx.doi.org/10.1016/j.engfracmech.2012.04.025
[19] Nelli Silva, E.C., Ono Fonseca, J.S., Montero F., Crumm, A. T., Brady, G. A.,Halloran, J. W. & Kikuchi, N., Design of piezocomposite materials and piezoelectrictransducers using topology optimization. Archives of Computational Methods inEngineering, 6, pp. 117–182, 1999. doi: http://dx.doi.org/10.1007/BF02736183
[20] Uetsuji, Y., Nakamura, Y., Ueda, S. & Nakamachi, E., Numerical investigation onferroelectric properties of piezoelectric materials. Modelling and Simulation inMaterials Science and Engineering, 12, pp. S303–S317, 2004. doi: http://dx.doi.org/10.1088/0965-0393/12/4/S02
[21] Jayachandran, K.P., Guedes, J.M. & Rodrigues, H.C., Homogenization of textured aswell as randomly oriented ferroelectric polycrystals. Computational Materials Science,45, pp. 816–820, 2009. doi: http://dx.doi.org/10.1016/j.commatsci.2008.05.027
[22] Elhadrouz, M., Zineb, T.B. & Patoor, E., Finite element analysis of a multilayerpiezoelectric actuator taking into account the ferroelectric and ferroelastic behaviors.International Journal of Engineering Science, 44, pp. 996–1006, 2006. doi: http://dx.doi.org/10.1016/j.ijengsci.2006.05.013
[23] Zhang, W., Bhattachary, K., A computational model of ferroelectric domains. Part I:Model formulation and domain switching. Acta Materialia, 53, pp. 185–198, 2005. doi:http://dx.doi.org/10.1016/j.actamat.2004.09.016
[24] Li, F.X. & Rajapakse, R.K.N.D., Nonlinear fi nite element modeling of polycrystallineferroelectrics based on constrained domain switching, Computational Materials Science,44, pp. 322–329, 2008. doi: http://dx.doi.org/10.1016/j.commatsci.2008.03.040
[25] Li, Q., Ricoeur, A., Enderlein, M. & Kuna, M., Evaluation of electromechanical couplingeffect by microstructural modeling of domain switching in ferroelectrics. MechanicsResearch Communications, 37, pp. 332–336, 2010. doi: http://dx.doi.org/10.1016/j.mechrescom.2010.03.003
[26] Xu, B.X., Schrade, D., Mueller, R. & Gross, D., Micromechanical analysis offerroelectric structures by a phase fi eld method. Computational Materials Science, 45,pp. 832–836, 2009. doi: http://dx.doi.org/10.1016/j.commatsci.2008.07.010
[27] Qiao, H., Wang, J. & Chen, W., Phase fi eld simulation of domain switching inferroelectric single crystal with electrically permeable and impermeable cracks. ActaMechanica Solida Sinica, 25, pp. 1–8, 2012.
[28] Li, F.X. & Zhou, X.L., Simulations of gradual domain-switching in polycrystallineferroelectrics using an optimization-based, multidomain-grain model. Computers &Structures, 89, pp. 1142–1147, 2011. doi: http://dx.doi.org/10.1016/j.compstruc.2010.11.002
[29] Uetsuji, Y., Yoshida, T., Yamakawa, T., Tsuchiya, K., Ueda, S. & Nakamachi, E.,Evaluation of ferroelectric properties of piezoelectric ceramics based on crystallographichomogenization method and crystal orientation analysis by SEM·EBSD technique.JSME International Journal Series A, 49, pp. 209–215, 2006. doi: http://dx.doi.org/10.1299/jsmea.49.209
[30] Uetsuji, Y., Kuramae, H., Tsuchiya, K. & Kamlah, M., A multiscale fi nite elementsimulation of piezoelectric materials using realistic crystal morphology. WIT Transactionson Modelling and Simulation, 51, pp. 601–611, 2011. doi: http://dx.doi.org/10.2495/CMEM110531
[31] Uetsuji, Y., Satou, Y., Nagakura, H., Nishioka, H., Kukamae, H. & Tsuchiya, K.,Crystal morphology analysis of piezoelectric ceramics using electron backscatterdiffraction method and its application to multiscale fi nite element analysis. Journalof Computational Science and Technology, 2, pp. 568–577, 2008. doi: http://dx.doi.org/10.1299/jcst.2.568
[32] Uetsuji, Y., Kimura, S., Kuramae, H., Tsuchiya, K. & Kamlah, M., Multiscale fi niteelement simulations of piezoelectric materials based on two- and three-dimensionalelectron backscatter diffraction–measured microstructures. Journal of IntelligentMaterial Systems and Structures, 23, pp. 563–573, 2012. doi: http://dx.doi.org/10.1177/1045389X12436740
[33] Kuramae, H., Nishioka, H., Uetsuji, Y. & Nakamachi, E., Development and performanceevaluation of parallel iterative method. Transactions of the Japan Society forComputational Engineering and Science, Paper No. 20070033, 2007.
[34] Jaffe, B., Piezoelectric ceramics, Academic press: London and New York, p. 74, 1971.