OPEN ACCESS
the topic’s work is the modeling and control of a variable speed wind turbine based on the asynchronous doubly-Fed Induction generator DFIG. The goal is to control separately the active and reactive power of the generator with the backstepping method, using the Lyapunov functions to ensure system stability. A simulation of the control law using Matlab/Simulink was made to verify its validity.
wind turbine, doubly-Fed Induction generator (DFIG), MPPT, backstepping.
Neris A.S., Vovos N.A., Giannakopoulos G.B. (1999). A Variable Speed Wind Energy Conversion Scheme for Connection to Weak AC Systems. IEEE Transactions on Energy Conversion, vol. 14, n° 1, March, p. 122-127.
Beltran B., Ahmed-Ali T., and Benbouzid M.E.H. (2008). “Sliding mode power Control of variable speed wind energy conversion systems,” ‖IEEE Trans. Energy Convers., vol. 23, n° 22, p. 551-558, June .
Frédéric P. (2003). Etude et commande de génératrices asynchrones pour l'utilisation de l'énergie éolienne-machine asynchrone a cage autonome-machine asynchrone à double alimentation reliée au réseau. Thèse de doctorat. Université de Nantes.
Bouallegue S., Khoud K. (2016). Integral Backstepping Control Prototyping for a Quad Tilt Wing Unmanned Aerial Vehicle, International Review of Aerospace Engineering (IREASE), vol. 9, n° 5, p. 152-161.
El Majdoub, K., Ouadi (2015). Backstepping Control for Semi-Active Suspension of Half-Vehicle with Dahl Magnetorheological Damper Model. International Journal on Engineering Applications (IREA), vol. 3, n° 4, p. 96-107.
Huynh Q., Nollet F., Essounbouli N., Hamzaoui A. (2011). Power management of a variable speed wind turbine for stand-alone system using fuzzy logic. In Fuzzy Systems (FUZZ), 2011 IEEE International Conference on, p. 1404-1410. IEEE.
Huynh Q., Nollet, F., Essounbouli, N., Hamzaoui, A. (2012). Fuzzy control of variable speed wind turbine using permanent magnet synchronous machine for stand-alone system. In Sustainability in Energy and Buildings. Proceedings of the 3rd International Conference in Sustainability in Energy and Buildings (SEB 11), vol. 12, p. 31. Springer Verlag.
Kaldellis J., Kavadias K., Koronakis P. (2007). Comparing wind and photovoltaic stand-alone power systems used for the electrification of remote consumers. Renewable and Sustainable Energy Reviews, vol. 11, n° 1, p. 57-77.
Kanchanaharuthai A., Mujjalinvimut E. (2016). An Adaptive Backstepping Coordinated Excitation and STATCOM Control for Power Systems. International Review of Electrical Engineering (IREE), vol. 11 n° 4, p. 391-398.
Koutroulis E. and Kalaitzakis K. (2006). Design of a maximum power tracking system for wind-energy-conversion applications. Industrial Electronics, IEEE Transactions on, vol. 53, n° 2, p. 486-494.
Hilal M., Benchagra M., Errami Y., Maaroufi M., Ouassaid M. (2011). Maximum power tracking of wind turbine based on doubly fed induction generator. International Review of Modelling and Simulations, vol. 4 n° 5, p. 2255-2263, October.
Quang M.H. (2014). Optimisation de la production d’électricité pour site isolé,” these University Reims-champaigne ardeins.
Payam A., Hassani F., Fathipour M. (2014). Design of Hybrid Closed Loop Control Systems for a MEMS Accelerometer Using Nonlinear Control Principles. International Review of Aerospace Engineering (IREASE), vol. 7, n° 5, p. 164-170.
Sabiri Z., Machkour N., Kheddioui Elm., Boujoudi B., Camara M.B., Dakyo B. (2015). DC/ DC converters for the conditioning of Photovoltaic energy- Modeling and command strategy. American Journal of Engineering Research AJER, vol. 4, n° 2, feb.
Sabiri Z., Machkour N., Elm. Kheddioui, Camara M.B., Dakyo B. (2014). DC/DC converters for Photovoltaic Applications- Modeling and Simulations. Proceeding conference IRSEC Ouarzazate-17-19 October.