Management and evaluation of the advanced adiabatic CAES integrated in the power system considering the contribution to system service

Management and evaluation of the advanced adiabatic CAES integrated in the power system considering the contribution to system service

Minh-Thang Do Asma Merdassi Benoît Robyns

Laboratoire d’électrotechnique et d’électronique de Puissance (L2EP) Lille, France and Ecole des hautes études d’ingénieur (HEI), Lille, France

Corresponding Author Email:
31 August 2016
| Citation



This paper1 proposes a methodology of real-time supervision which allows maximizing ancillary services and contributing to the profitability of the Advanced Adiabatic Compressed Air Energy Storage (CAES). A real-time multi-objectives supervisor based on fuzzy logic is developed in order to maximize the economic gain of the storage, taking into account the buy/sell action and ancillary services (imperative and additional) of the storage, such as frequency control, congestion management and covering renewable energy production. The proposed supervisor is tested on the IEEE 14 bus test system. The results of the simulation show a significant economic gain of the storage when participating in ancillary services and in others additional services which need a real-time management.


adiabatic compressed Air energy storage, ancillary services, transmission network, energy supervision.

1. Introduction
2. Services provided by the storage
3. Supervision strategy
4. Economic value of services
5. Application
6. Conclusions

This study received funding from the ANR through the SACRE project whose partners are EDF, Géostock, Laboratories LMS, PROMES and L2EP.


Ackermann T. (2005). Wind power in power systems. Wiley. ISBN: 978-0-470-97416-2.

Calaminus B. (2007). Innovative Adiabatic Compressed Air Energy Storage System of EnBW in Lower Saxony. In Électrotechnique 2nd International Renewable Energy Storage conference (IRES II). Bonn, Germany.

Chen X.L. et al. (2016). Modelling study, efficiency analysis and optimisation of large-scale Adiabatic Compressed Air Energy Storage systems with low-temperature thermal storage. Applied Energy, 162, p. 589-600.

Courtecuisse V. et al. (2010). Methodology to build fuzzy logic based supervision of hybrid renewable energy systems. Mathematics and Computers in Simulation, 81, p. 202-24.

Do M.-T. (2012). Approche probabiliste pour l’évaluation de la fiabilité du système électrique intégrant des énergies renouvelables peu prévisibles. Doctoral thesis, Universite Lille 1.

Foley A.M. et al. (2015). A long-term analysis of pumped hydro storage to firm wind power. Applied Energy, 137, p. 638-648.

Geth F. et al. (2015). An overview of large-scale stationary electricity storage plants in Europe: Current status and new developments. Renewable and Sustainable Energy Reviews, 52, p. 1212-27.

Jakiel C., Zunft S., Nowi A. (2007). Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: the European project AA-CAES. International Journal of Energy Technology and Policy, 11, p. 296-306.

Liu J.-L., Wang J.-H. (2016). A comparative research of two adiabatic compressed air energy storage systems. Energy Conversion and Management, 108, p. 566-578.

Robyns B. et al. (2012. Production d’énergie électrique à partir des sources renouvelables. Lavoisier. ISBN: 978-2-7462-2489-6.

Robyns B., Davigny A., Saudemont C. (2013a). Energy management of storage systems based power sources and loads. Electromotion Journal, 20, p. 25-35.

Robyns B., Davigny A., Saudemont C. (2013b). Methodologies for supervision of hybrid energy sources based on storage systems – A survey. Mathematics and Computers in Simulation, 91, p. 52-71.

RTE (2012). Réseau de transport d’électricité. [Online] Available at: [Accessed 2012].

RTE (2013). Bourse de l'électricité Epex Spot. [Online] Available at:

RTE (2013). Référentiel Technique de RTE. [Online] Available at: [Accessed 2013].

Sprooten J., Courtecuisse V., Robyns B. & Deuse J. (2009). Méthodologie de développement de superviseurs à logique floue de centrales multisources à base d'énergie renouvelable. European Journal of Electrical Engineering, vol. 12, n° 5, p. 553-83.

Vergnol A. (2010). Intégration dans le réseau électrique et le marché de l’électricité de production décentralisée d’origine renouvelable: Gestion des congestions locales. École Centrale de Lille: Thèse présentée le 29 novembre.

Vergnol A. & Robyns B. (2011). Localization of storage by identification of weakness of power systems. In MIXGENERA 2011. Leganés, Madrid, Spain1.

Vergnol A. et al. (2009). Gestion des congestions dans un réseau intégrant de l’énergie éolienne. Revue 3EI: Enseigner l’Electrotechnique et l’Electronique Industrielle, 59, p. 63-72.

Vergnol A. et al. (2011). Line Overload Alleviation through Corrective Control in Presence of Wind Energy. Electric Power Systems Research, 81, p. 1583-1591.

Zhao P., Gao L., Wang J., Dai Y. (2016). Energy efficiency analysis and off-design analysis of two different discharge modes for compressed air energy storage system using axial turbines. Renewable Energy, 85, p. 1164-1177.