Influence of Computing Magnetic Field on Thermal Performance of a Magnetocaloric Cooling System

Influence of Computing Magnetic Field on Thermal Performance of a Magnetocaloric Cooling System

Amine Mira Christophe Espanet Thierry de Larochelambert Stefan Giurgea Philippe Nika

FEMTO-ST Institute, University of Franche-Comte 2 av. Jean Moulin, 90000 Belfort, France

FEMTO-ST Institute, University of Technology of Belfort-Montbéliard Rue Thierry Mieg, 90000 Belfort, France

Corresponding Author Email: 
mohamed_amine.mira; christophe.espanet , philippe.nika @univ-fcomte.fr; thierry.de-larochelambert@femto-st.fr; stefan.giurgea@utbm.fr
Page: 
151-170
|
DOI: 
https://doi.org/10.3166/EJEE.17.151-170
Received: 
7 January 2014
|
Accepted: 
17 July 2014
|
Published: 
31 August 2014
| Citation

OPEN ACCESS

Abstract: 

Based on the magnetocaloric effect in some ferromagnetic materials around the room temperature, the magnetic refrigeration is an emerging technology having the following strong advantage comparing to the conventional ones: this technology offers an environmental advantage with avoiding greenhouse gas emissions from refrigerants used in the classical vapor compression machines. However, cost and efficiency have still to be improved. Then, in order to propose an accurate modeling of magnetic refrigeration systems, a multi-physics model is proposed. It consists in coupling a 3D FEM magnetostatic model, an analytic magnetocaloric model and a thermo-fluidic model solved with finite difference method. An analysis of the magnetic field computation evaluates the impact of error on the thermal performances of the system when bypassing 3D FEM.

Keywords: 

numerical model, magnetocaloric effect, magnetic refrigeration, magnetic field computing.

1. Introduction
2. Presentation of magnetic refrigeration
3. Description of the test bench developed at FEMTO-ST Institute
4. Multi-physics modeling
5. Coupling strategy and results
6. Influence of computing magnetic field
7. Conclusion
  References

Allab F., Kedous-Lebouc A., Yonnet J.P., Fournier J.M. (2006). A magnetic field source system for magnetic refrigeration and its interaction with magnetocaloric material. International Journal of Refrigeration, vol. 29, n° 8, p. 1340-1347. 

Bahl C.R.H., Engelbrecht K., Eriksen D., Lozano J.A., Bjørk R., Geyti J., Nielsen K.K., Smith A., Pryds N. ( 2014). Development and experimental results from a 1 kw prototype AMR. International Journal of Refrigeration, 37, p.78-83.  

Bjørk R., Bahl C.R.H. & Katter M. (2010). Magnetocaloric properties of LaFe13−x−yCoxSiy and commercial grade Gd. Journal of Magnetism and Magnetic Materials, vol. 322, n° 24, p. 3882-3888.  

Cedrat (2012). Guide d’utilisation Flux 11 vol. 3, Grenoble. 

Coulomb D. (2005). Health and environment: The two key IIR challenges. In Magnetic Refrigeration at Room Temperature. Montreux, Switzerland. 

Courant R., Friedrichs K., Lewy H. (1967). On the Partial Difference Equations of Mathematical Physics. IBM Journal of Research and Development, vol. 11, n° 2, p. 215-234. 

Dan’kov S., Tishin A.M., Pecharsky V.K., Gschneidner Jr. (1998). Magnetic phase transitions and the magnetothermal properties of gadolinium. Physical Review B, vol. 57, n° 6, p. 3478-3490.  

Döbrich F., Kohlbrecher J., Sharp M., Eckerlebe H., Birringer R. & Michels A. (2012). Neutron scattering study of the magnetic microstructure of nanocrystalline gadolinium. Physical Review B, vol. 85, n° 9, p. 1- 17. 

Engelbrecht K. (2008). A Numerical Model of an Active Magnetic Regenerator Refrigerator with Experimental Validation. PhD thesis, University of Wisconsin-Madison. 

Gschneidner K.A., Pecharsky V.K. (2008). Thirty years of near room temperature magnetic cooling: Where we are today and future prospects. International Journal of Refrigeration, vol. 31, n° 6, p. 945-961.  

Kedous-Lebouc A., Allab F., Fournier J.M., Yonnet J.P. (2005). Réfrigération magnétique. Techniques de l’ingénieur, RE 28-1(0), p. 0-16. 

De Larochelambert T. (To be published). Looking for a magnetic equation of state of gadolinium.  

De Larochelambert T., Nika P. (Submitted). Heat transfer and friction coefficients in alternating  flows between parallel plates for magnetocaloric regnerators. International Journal of Thermal Sciences.  

Legait U., Guillou F., Kedous-Lebouc A., Hardy V., Almanza M. (2014). An experimental comparison of four magnetocaloric regenerators using three different materials. International Journal of Refrigeration, 37, p.147-155. 

Nielsen K.K., Tusek J., Engelbrecht K., Schopfer S., Kitanovski A., Bahl C.R.H., Smith A., Pryds N., Poredos A. (2011). Review on numerical modeling of active magnetic regenerators for room temperature applications. International Journal of Refrigeration, vol. 34, n° 3, p. 603-616. 

Risser M., Vasile, C., Keith B., Engel T., Muller C. (2012). Construction of consistent magnetocaloric materials data for modelling magnetic refrigerators. International Journal of Refrigeration, vol. 35, n° 2, p. 459-467. 

Romero Gómez J., Ferreiro Garcia R., De Miguel Catoira A., Romero Gómez M. (2013). Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration. Renewable and Sustainable Energy Reviews, 17, p. 74-82.  

Roudaut J., Kedous-Lebouc A., Yonnet J.P., Muller C. (2011). Numerical analysis of an active magnetic regenerator. International Journal of Refrigeration, vol. 34, n° 8, p. 1797-1804.  

Tishin A., Gschneidner K.A., Pecharsky V.K. (1999). Magnetocaloric effect and heat capacity in the phase-transition region. Physical Review B, vol. 59, n° 1, p. 503-511.  

Weiss P. (1921). Le phénomène Magnéto-Calorique. Le journal de la physique et le Radium, p. 161-182. 

Yu B., Liu M., Egolf P.W., Kitanovski A. (2010). A review of magnetic refrigerator and heat pump prototypes built before the year 2010. International Journal of Refrigeration, vol. 33, n° 6, p. 1029-1060.  

Yu B., Gao Q., Zhang B., Meng X.Z., Chen Z. (2003). Review on research of room temperature magnetic refrigeration. International Journal of Refrigeration, vol. 26, n° 6, p. 622-636.