OPEN ACCESS
This article provides an introduction to large random matrix theory, aimed at a non- specialist audience. We state and prove Marcˇenko-Pastur’s theorem which describes the asymp- totic spectrum of a large covariance matrix. We introduce the Stieltjes transform and associated techniques; we also introduce specific techniques for matrices with gaussian entries, which in particular provide a short proof for the isotropic Marcˇenko-Pastur theorem. We also present co- variance matrices with general population covariance matrices and spiked models. We finally give an application of the theory to wireless communication.
random matrix theory.
Anderson G. W., Guionnet, A., Zeitouni, O. (2010). An introduction to random matrices, vo- lume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge.
Z. D. Bai Z.D., Silverstein, J.W. (2010). Spectral analysis of large dimensional random ma- trices. Springer Series in Statistics. Springer, New York, second edition.
Baik, J., Ben Arous, G., Péché, S. (2005). Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab., 33(5):1643–1697.
Baik J., Silverstein J.W. (2006). Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal., 97(6):1382–1408.
Benaych-Georges F., Nadakuditi R.R. (2011). The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math., 227(1):494–521.
P. Bianchi P., Debbah M., Maida M., Najim J. (2011). Performance of statistical tests for single-source detection using random matrix theory. Information Theory, IEEE Transactions on, 57(4):2400 –2419.
Billingsley P. (1968). Convergence of probability measures. John Wiley & Sons Inc., New York.
Bordenave C. (2013). A short course on random matrices (preliminary draft). available on http://www.math.univ-toulouse.fr/∼ bordenave/coursRMT.pdf.
Boucheron S., Lugosi G., Massart P. (2013) Concentration Inequalities: A Nonasymptotic Theory of Independence. OUP Oxford.
Chafaï D., Malrieu F. (2015). Recueil de modèles aléatoires. disponible sur la page web de D. Chafaï.
Couillet R., Debbah M. (2011). Random matrix methods for wireless communications. Cam- bridge University Press.
Dudley R.M. (2002). Real analysis and probability, volume 74 of Cambridge Studies in Ad- vanced Mathematics. Cambridge University Press, Cambridge. Revised reprint of the 1989 original.
Dumont J., Hachem W., Lasaulce S., Loubaton P., Najim J. (2010) On the capacity achieving covariance matrix for rician mimo channels: An asymptotic approach. Information Theory, IEEE Transactions on, 56(3):1048 –1069.
Foschini G.J. (1996). Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs technical journal, 1:41–59.
Hachem W., Kharouf M., Najim J., Silverstein J.W. (2012). A CLT for information- theoretic statistics of non-centered Gram random matrices. Random Matrices Theory Appl., 1(2):1150010, 50.
Hachem W., Loubaton P., Najim J. (2007). Deterministic equivalents for certain functionals of large random matrices. Ann. Appl. Probab., 17(3):875–930.
Hachem W., Loubaton P., Najim J., Vallet P. (2013) On bilinear forms based on the resolvent of large random matrices. Ann. Inst. Henri Poincaré Probab. Stat., 49(1):36–63.
Horn R.A., Johnson C.R. (2013) Matrix analysis. Cambridge University Press, Cambridge, second edition.
Johnstone I.M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist., 29(2):295–327.
Kallenberg O. (2002). Foundations of modern probability. Probability and its Applications (New York). Springer-Verlag, New York, second edition.
Kre˘ın M.G., Nudel’man A.A. (1977). The Markov moment problem and extremal problems. American Mathematical Society, Providence, R.I. Ideas and problems of P. L. Cˇ ebyšev and A. A. Markov and their further development, Translated from the Russian by D. Louvish, Translations of Mathematical Monographs, Vol. 50.
Marcenko V.A., Pastur L.A. (1967). Distribution of eigenvalues in certain sets of random ma- trices. Mat. Sb. (N.S.), 72 (114):507–536.
Nica A., Speicher R. (2006). Lectures on the combinatorics of free probability, volume 335 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge.
Pastur L., Shcherbina M. (2011). Eigenvalue distribution of large random matrices, volume 171 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI.
Rudin W. (1987). Real and complex analysis. McGraw-Hill Book Co., New York, third edition.
Silverstein. J.W. (1995) Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices. J. Multivariate Anal., 55(2):331–339.
Silverstein J.W., Choi S. (1995). Analysis of the limiting spectral distribution of large- dimensional random matrices. J. Multivariate Anal., 54(2):295–309.
Tao T. (2012) Topics in random matrix theory, volume 132 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI.
Telatar E. (1998). Capacity of multi-antenna Gaussian channels. European transactions on telecommunications, 10(6):585–595.
Weidmann J. (1980). Linear operators in Hilbert spaces, volume 68 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin. Translated from the German by Joseph Szücs.
Wigner E.P. (1955). Characteristic vectors of bordered matrices with infinite dimensions. Ann. of Math. (2), 62:548–564.
Wigner. E.P. (1958). On the distribution of the roots of certain symmetric matrices. Ann. of Math. (2), 67:325–327.
Wishart J. (1928). The generalised product moment distribution in samples from a normal multivariate population. Biometrika, 20A((1-2)):32–52.