Combined experimental and numerical characterization of thermal properties of lightweight concretes used in construction

Combined experimental and numerical characterization of thermal properties of lightweight concretes used in construction

Nassima Sotehi  Ismail Tabet  Abla Chaker 

Physics Departement, Sciences Faculty, Université of 20 Aout 1955 Skikda-Algeria

Energy Physics Laboratory, University of Constantine 1, Algeria

Corresponding Author Email: 
n.sotehi@univ-skikda.dz
Page: 
245-258
|
DOI: 
https://doi.org/10.3166/ACSM.42.245-258
Received: 
| |
Accepted: 
| | Citation

OPEN ACCESS

Abstract: 

The aim of this study is to investigate the thermal insulation properties of the construction materials used in the buildings sector. Initially, the effect of moisture on the thermophysical properties of three types of concrete (classic concrete, concrete with cork aggregate and polystyrene concrete) are investigated experimentally. Then a numerical analysis basing on finite differences method is applied in order to examine simultaneous heat and mass phenomena inside studied materials. Through this study, it was found that the presence of water in building materials, even in small quantities significantly modifies their thermophysical properties, which leads an adverse effect on their thermal insulation power. The results indicate that the addition of cork aggregates and polystyrene beads to concrete improves its thermal performance. This work comes also within an economic framework, given the abundance of cork aggregates and polystyrene beads

Keywords: 

lightweight concrete, construction materials, thermal properties, heat and mass transfer

1. Introduction
2. Experimental approach
3. Mathematical modeling
4. Results and discussion
5. Conclusion
  References

Amara I., Mazioud A., Boulaoued I., Mhimid A. (2017). Experimental study on thermal properties of bio-composite (gypsumplaster reinforced with palm tree fibers) for building insulation. International Journal of Heat and Technology, Vol. 35, No.1, pp. 576-584. http://doi.org/10.18280/ijht.350314

Azizi S. (1989). Conductivité thermique des milieux poreux non saturés. Analyse théorique et expérience. Heigh Temperatures - Heigh Pressures, Vol. 21, pp. 383‐389.

Bogas J. A., de Brito J., Figueiredo J. M. (2015). Mechanical characterization of concrete produced with recycled lightweight expanded clay aggregate concrete. J. Clean. Prod., Vol. 89, pp. 187-195. http://doi.org/10.1016/j.jclepro.2014.11.015

Boukhattem L., Mir R., Kourchi M., Bendou A. (2007). Caractérisation thermophysique du mortier a base du ciment et de sable. Revue Internationale d’Héliotechnique énergie- Environnement, Vol. 36, pp. 3-12.

Boutin C. (1996). Conductivité thermique du béton cellulaire autoclavé: Modélisation par méthode autocohérente. Matériaux et Constructions, Vol. 29, pp. 609-6l. http://doi.org/10.1007/BF02485968

de-Carvalho R., Teixeira-Dias F., Varum H. (2013). Cyclic behaviour of a lightweight mortar with cork granulate composite. Composite Structures, Vol. 95, pp. 748-755. http://doi.org/10.1016/j.compstruct.2012.08.043

Demirboga R., Kan A. (2012). Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes. Constr. Build. Mater., Vol. 35, pp. 730-734.

Khab H., Chaker A. (2009). Influence des ciments locaux sur les propriétés hygrothermiques des bétons. Revue algérienne de physique, Vol. 3, pp. 46-49.

 Koksal F., Gencel O., Kaya M. (2015). Combined effect of silica fume and expanded vermiculite on properties of lightweight mortars at ambient and elevated temperatures. Constr. Build. Mater., Vol. 88, pp. 175-187. http://doi.org/10.1016/j.conbuildmat.2015.04.021

Liu Y., Ma D., Jiang Z., Xiao F., Huang X., Liu Z., Tang L. (2016). Dynamic response of expanded polystyrene concrete during low speed impact. Constr. Build. Mater., Vol. 30, pp. 72-80. http://doi.org/10.1016/j.conbuildmat.2016.06.059

Madandoust R., Ranjbar M. M., Mousavi S. Y. (2011). An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene. Constr. Build. Mater., Vol. 25, No. 9, pp. 3721-3731. http://doi.org/10.1016/j.conbuildmat.2011.04.018

Meukam P., Noumowe A., Jannot Y., Duval R. (2003). Caractérisation thermophysique et mécanique de briques de terre stabilisées en vue de l'isolation thermique de bâtiment. Materials and Structures, Vol. 36, pp. 453-460.

Nguyen L. H., Beaucour A. L., Ortola S., Noumowé A. (2014). Influence of the volume fraction and the nature of fine lightweight aggregates on the thermal and mechanical properties of structural concrete. Constr. Build. Mater., Vol. 51, pp. 121-132. http://doi.org/10.1016/j.conbuildmat.2013.11.019

Oktay H., Yumrutas R., Akpolat A. (2015). Mechanical and thermophysical properties of lightweight aggregate concretes. Constr. Build. Mater., Vol. 96, pp. 217-225. http://doi.org/10.1016/j.conbuildmat.2015.08.015

Panesar D. K., Shindman B. (2012). The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cement and Concrete Composites, Vol. 34, No. 9, pp. 982-992. http://doi.org/10.1016/j.cemconcomp.2012.06.003

Real S., Gomes M. G., Rodrigues A. M., Bogas J. A. (2016). Contribution of structural lightweight aggregate concrete to the reduction of thermal bridging effect in buildings. Constr. Build. Mater., Vol. 121, pp. 460-470. http://doi.org/10.1016/j.conbuildmat.2016.06.018

Schackow A., Effting C., Folgueras M. V., Güths S., Gabriela A. (2014). Mendes. Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent. Constr. Build. Mater., Vol. 57, pp. 190-197. http://doi.org/10.1016/j.conbuildmat.2014.02.009

Shink M. (2003). Compatibilité, élastique, comportement mécanique et optimisation des bétons de granulats légers. Thèse de doctorat (Ph.D.), Université Laval Québec.

Sotehi N., Chaker A. (2013) Characterization of cork lightweight material used in building thermal insulation. TOJSAT: The Online Journal of Science and Technology, Vol. 3, No. 4, pp. 35- 40. 

Sotehi N., Chaker A. (2014). Numerical analysis of simultaneous heat and mass transfer in cork lightweight concretes used in building envelopes. Physics Procedia, Vol. 55, pp. 429-436. http://doi.org/10.1016/j.phpro.2014.07.062

Sotehi N., Chaker A. (2014). Thermal performance characterization of lightweight concrete incorporated with polystyrene. Study of Civil Engineering and Architecture (SCEA), Vol. 3, pp. 59-61. 

Xu Y. (2012). Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick. Constr. Build. Mater., Vol. 27, No. 1, pp. 32-38. http://doi.org/10.1016/j.conbuildmat.2011.08.030

Yasar E., Erdogan Y. E. (2008). Strength and thermal conductivity in lightweight building Materials. Bull. Eng. Geol. Environ.,Vol. 67, pp. 513- 519. http://doi.org/10.1007/s10064-008-0166-x 

Zhang B., Poon C. S. (2015). Use of Furnace Bottom Ash for producing lightweight aggregate concrete with thermal insulation properties. Journal of Cleaner Production, Vol. 99, pp. 94-100. http://doi.org/10.1016/j.jclepro.2015.03.007