The importance of self-generation of electricity through controlled recycling: a case study in West Sub-Saharan African regions

The importance of self-generation of electricity through controlled recycling: a case study in West Sub-Saharan African regions

Francisco Javier Balbás García José Ramón Aranda Sierra Javier García Blanco Alberto Ceña Lázaro

Department of Electrical and Energy Engineering, University of Cantabria, Spain

BEPTE Consultores S.L., Spain

Page: 
338-350
|
DOI: 
https://doi.org/10.2495/EQ-V7-N4-338-350
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

© 2022 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

OPEN ACCESS

Abstract: 

Controlled recycling of different materials, typical to household appliances, from the landfills located in developing countries in West Sub-Saharan Africa and their subsequent reuse can favour the social, economic and environmental sustainability of the involved regions. This process reduces the unhealthy conditions associated with landfills and the inadequate use of fuels, and it also solves certain deficits in the population. As a continuation of previous studies, this article proposes a practical example of manufacture through the controlled reuse of an asynchronous wind-powered electricity generation system, analysing the benefits and possibilities detected, especially in domestic self-generation and in the reduction of CO2 emissions into the atmosphere. In summary, the topic is the manufacture of an energy generating system using recycled material for domestic use. In this way, the associated self-generation of electricity can supply or reduce the energy demand of a large part of the population in these regions that do not have electricity supply; for example, for a household in Nigeria, it would save between 15% and 75% of the electricity supply. Providing electricity supply also prevents deforestation in regions that use natural biomass as an alternative energy source, an issue that has a global impact on CO2 emissions into the atmosphere.

Keywords: 

controlled recycling, deforestation, emissions, landfills, wind power

  References

[1] Hameed, S. A., Controlling computer and electronic waste: Toward solving environmen-tal problems. International Conference on Computer and Communication Engineering, ICCCE 2012, IEEE, pp. 972–977, 2012. https://doi.org/10.1109/ICCCE.2012.6271361

[2] Schluep, M., et al., Insights from a decade of development cooperation in e-waste man-agement. International Conference on Information and Communication Technologies for Sustainability, pp. 45–51, February 2013. https://doi.org/10.3929/ethz-a-007337628

[3] Lundgren, K., The global impact of e-waste: addressing the challenge. International Labour Office, Programme on Safety and Health at Work and the Environment, sectoral activities department, Geneva, 2012.

[4] Kiddee, P., Naidu, R. & Wong, M.H. Electronic waste management approaches: An overview. Waste Management, 33(5), pp. 1237–1250, 2013. https://doi.org/10.1016/j.wasman.2013.01.006

[5] Huang, J., Nkrumah, P. N., Anim, D. O. & Mensah, E., E-waste disposal effects on the aquatic environment: Accra, Ghana. Reviews of Environmental Contamination and Toxicology, 229, pp. 18–34, 2014. https://doi.org/10.1007/978-3-319-03777-6

[6] Owusu-Sekyere, E., Scavenging for wealth or death? Exploring the health risk associ-ated with waste scavenging in Kumasi, Ghana. Ghana Journal of Geography, 6(1), pp. 63–80, 2015. http://www.ajol.info/index.php/gjg/article/view/111135

[7] Daum, K., Stoler, J. & Grant, R., Toward a more sustainable trajectory for e-waste policy: A review of a decade of e-waste research in Accra, Ghana. International Journal of Environmental Research and Public Health, 14(2), p. 135, 2017. https://doi.org/10.3390/ijerph14020135

[8] Blacksmith Institute and Green Gross, The World’s worst 2013: The top ten toxic threats. www.worstpolluted.org. Accessed on: 21 Sep. 2017.

[9] Baldé, C. P., The global e-waste monitor 2017: Quantities, flows and resources, United Nations University, International Telecommunication Union, and International Solid Waste Association, 2017.

[10] Palma-Aleman, L. C., et al., Los residuos electrónicos un problema mundial del siglo XXI Resumen Introducción. Culcy/ Medio Ambient., 59(1), pp. 379–392, 2016.

[11] Man, M., Naidu, R. & Wong, M. H., Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future. Science of the Total Environment, 463–464, pp. 1133–1137, 2013.

[12] Bernhardt, A. & Gysi, N., The Toxics Beneath our Feet, World’s Worst Pollution Problems, Zurich, 53p, 2016.

[13] Kasper, A. C., Gabriel, A. P., de Oliveira, E. L. B., et al., Electronic Waste Recycling, Springer, Cham, pp. 87–127, 2015.

[14] Department of Labor’s Findings on the Worst Forms of Child Labor. Disponible en: www.dol.gov/ilab/programs/ocft/tda.htm. Accessed on: 17 Feb. 2018.

[15] Belward, A., et al. Renewable energies in Africa. JRC Scientific and Technical Reports, pp. 1–62, 2012. https://doi.org/10.2788/1881

[16] Oficina Económica y Comercial de España en Lagos. Nigeria, Informe económico y comercial (actualizado a febrero de 2017). https:www.comercio.gob.es. Accessed on: 17 Mar. 2021.

[17] International Energy Agency, IEA. Africa Energy Outlook 2019. Disponible en: http://www.iea.org. Accessed on: 10 May. 2021.

[18] Cronk, R. & Bartram, J., Environmental conditions in health care facilities in low-and middle-income countries: coverage and inequalities. International Journal of Hygiene and Environmental Health, 221(3), pp. 409–422, 2016.

[19] Bakkegaard, R. K., et al. National Socioeconomic Surveys in Forestry, FAO, Rome, 2016.

[20] Jewitt, S., Atagher, P. & Clifford, M., We cannot stop cooking: Stove stacking, seasonality and the risky practices of household cookstove transitions in Nigeria. Energy Research & Social Science, 61, p. 101340, 2020.

[21] Balbás, F. J., Blanco, J., Aranda, J. R. & Ceña, A., Manufacture of electrical generators with recycled materials for self-consumption in building. REHABEND 2018, Congreso Latinoamericano sobre Patología de la Construcción, Tecnología de la Rehabilitación y Gestión del Patrimonio, Cáceres, España, mayo 15–18, 2018.

[22] Balbás, F. J., Blanco, J., Aranda, J. R. & Ceña, A. Electrical generator’s manufacturing through recycled materials for self-consumption. Journal of Energy and Power Engineering, 10(13), pp. 373–379, 2019.

[23] Balbás, F. J., Blanco, J., Aranda, J. R. & Ceña, A., Sustainability through recycling for building self-consumption. REHABEND 2020, Congreso Latinoamericano sobre Patología de la Construcción, Tecnología de la Rehabilitación y Gestión del Patrimonio, Granada, España, marzo 24–27, 2020.

[24] Organización de las Naciones Unidas para la alimentación y la agricultura, FAO. https://www.fao.org. Accessed on: 11 Nov. 2020.

[25] Balbás, F. J., Aranda, J. R. & Kata, N., Renewable energy in developing countries (analysis of photovoltaic panels in Togo). XXXVIII IAHS World Congress on Housing, Istanbul, Turkey, April 16–19, 2012.

[26] Oyedepo, S. O., On energy for sustainable development in Nigeria. Renewable and Sustainable Energy Reviews, 16(5), pp. 2583–2598, 2012.

[27] Nigerian Electricity Regulatory Commision, NERC. Generation. https://nerc.gov.ng/. Accessed on: 10 Apr. 2021.

[28] Red Eléctrica Española, REE. Metodología para el Cálculo de emisiones de Gases de Efecto Invernadero (GEI) de Red Eléctrica de España, SAU. (Versión simplificada). Disponible en: https://www.ree.es. Accessed on: 10 Jun. 2021.

[29] Unión Europea. Decisión de la Comisión de 18 de julio de 2007 por la que se establecen directrices para el seguimiento y la notificación de las emisiones de gases de efecto invernadero de conformidad con la Directiva 2003/87/CE del Parlamento Europeo y del Consejo. Diario Oficial de la Unión Europea, no. 2007/589/CE, p. 15, 31 de agosto de 2007.