Fractal and Multifractal Processing of Images
Traitement Fractal Et Multifractal des Images
OPEN ACCESS
Recently, a number of important progresses in fractal analysis have had a major impact in image processing applications. We review briefly IFS theory, multifractal analysis and fractional processes theory; we indicate how these theoretical tools lead to new methods for image processing: Compression, segmentation, denoising, interpolation, modeling and synthesis. Among others, these applications show that fractal analysis is no longer restricted to a descriptive role, but has entered an « operational phase ».
Résumé
Récemment, plusieurs développements importants en analyse fractale ont eu un impact majeur sur les applications en traitement des images. Nous abordons brièvement la théorie des systèmes de fonctions itérées, l'analyse multifractale et les processus fractionnaires, en expliquant comment des progrès dans ces divers champs ont conduit à de nouvelles méthodes en traitement des images : compression, segmentation, débruitage, interpolation, modélisation et synthèse. Ces applications, parmi d'autres, montrent que l'analyse fractale est résolument passée depuis quelques années du « stade descriptif » au « stade opérationnel ».
Multifractal analysis, pointwise regularity, Hölder exponent, fractional process, fractional and multifractional Brownian motion, iterated functions system, wavelet analysis, compression, denoising, segmentation, interpolation, modeling, synthesis.
Mots clés
Analyse multifractale, régularité ponctuelle, exposant de Hölder, processus fractionnaire, mouvement Brownien fractionnaire et multifractionnaire, système de fonctions itérées, analyse en ondelettes, compression, débruitage, segmentation, interpolation, modélisation, synthèse.
[1] P. Adler, Porous Media: Geometry and Transport Butterworth/Heinemann, Stoneham, MA, 1992.
[2] D. Avnir, Ed., The Fractal approach to Heterogeneous Chemistry, Wiley, New York, 1989.
[3] A. Ayache, S. Cohen, J. Lévy Véhel, The covariance structure of multifractional Brownian motion, ICASSP 2000.
[4] M.F. Barnsley, Fractals Everywhere, AK Peters, 1993.
[5] P. Bas, J.M. Chassery, F. Davoine, Using the Fractal Code to Watermark Images, Proc. IEEE Int. Conf. on Image Processing , vol. I, , p. 469-473, Oct. 1998.
[6] A. Benassi, S. Jaffard, D. Roux, Gaussian Processes and Pseudodifferential Elliptic Operators, Rev. Math. Iberoamericana 13(1), 1997.
[7] J. Beran, Statistics for Long Memory Processes, Chapman and Hall, New York 1994.
[8] P. Doukhan, G. Oppenhaim, M.S. Taqqu, Theory and Applications of Long Range Dependence, Birkhauser, Boston 2003.
[9] K. Falconer, Fractal geometry, Mathematical foundations and applications, John Wiley & Sons Ltd, Chichester 1990.
[10] Y. Fisher, Ed., Fractal Image Encoding and Analysis, Springer Verlag, 1998.
[11] F. Hausdorff, Dimension und ausseres Mass, Math. Annalen 79, 1919.
[12] A. Bunde, S. Havlin, Ed., Fractals and disordered systems, SpringerVerlag, 1991.
[13] E. Herbin, Terrain Modeling using Multifractional Brownian motion, prétirage, 2002.
[14] E. Herbin, J. Lévy Véhel, 2-microlocal analysis of Gaussian processes, International Conference on fractal geometry and stochastics III, 2003.
[15] H. Hurst, Long term storage capacity of reservoirs, Tr. Am. Soc. Civil Eng. 116, 1951.
[16] S. Jaffard, Multifractal Formalism for Functions, I and II, Siam J. Math. Anal. 28 (4), 1997.
[17] S. Leger, Analyse stochastique de signaux multi-fractaux et estimations de paramètres, Thèse de doctorat, Université d'Orléans, 2000.
[18] P. Legrand, J. Lévy Véhel, Bayesian Multifractal Signal Denoising, ICASSP 2003, Hong Kong.
[19] J. Lévy Véhel, P. Legrand, Local regularity-based image interpolation, prétirage, 2003.
[20] J. Lévy Véhel, Introduction to the Multifractal Analysis of Images, in Fractal Image Encoding and Analysis, Yuval Fisher Editor, Springer Verlag, 1998.
[21] J. Lévy Véhel, Signal enhancement based on Hölder regularity analysis, IMA Volumes in Mathematics and its Applications, vol. 132, p. 197-209, 2002.
[22] J. Lévy Véhel, K. Daoudi, Generalized IFS for Signal Processing, IEEE DSP Workshop, Loen, Norway, September 1-4 1996.
[23] J. Lévy Véhel, R. Vojak, Multifractal Analysis of Choquet Capacities: Preliminary Results, Adv. in Appl. Math., vol. 20, No. 1, p. 1-43, January 1998.
[24] J. Chapuis, E. Lutton, ArtiE-Fract: INteractive Evolution of Fractals,4 th International Conference on Generative Art, Milano, Italy, 2001.
[25] B.B. Mandelbrot, The fractal geometry of nature, Freeman, 1977.
[26] B. B. Mandelbrot and J. Van Ness, Fractional brownian motion, fractional noises and applications, Siam Review, vol. 10, 422-437, 1968.
[27] H.O. Peitgen, P.H. Richter, The beauty of fractals, Springer, New York, 1986.
[28] R. Peltier, J. Lévy Véhel, Multifractional Brownian Motion: definition and preliminary results, rapport de recherche INRIA 2645, 1995.
[29] B. Pesquet-Popescu, Modélisation bidimensionnelle de processus non stationnaires et application à l'étude du fond sous-marin, Thèse de doctorat, École Normale Supérieure de Cachan, 1998.
[30] B. Pesquet-Popescu, Modèles fractionnaires bidimensionnels à espace discret, Technique et science informatiques, 20, 9, p 1173-1200, 2001.
[31] J. Puate, F. Jordan, Using fractal compression scheme to embed a digital signature into an image, Proceedings of SPIE Photonics East'96 Symposium, November 1996
[32] L. F. Richardson, Weather Prediction by numerical process, Cambridge Univ. Press, 1922.
[33] K. Weierstrass, Mathematische Werke, Mayer et Muller, Berlin, 1895.