Tensor approximation under existence constraint. Application to antenna array processing

Tensor approximation under existence constraint. Application to antenna array processing

Souleymen Sahnoun Pierre Comon

Gipsa-Lab, 11 rue des Mathématiques, Domaine Universitaire BP 46 38402 Saint Martin d’Hères Cedex, France

Corresponding Author Email: 
12 June 2015
28 December 2015
30 April 2016
| Citation



The subject is localization and estimation of sources in difficult conditions, namely when the sources are correlated and closely located in space, and samples are short. The proposed algorithm is based on a low-rank tensor approximation under original constraints ensuring its existence. It requires an antenna array formed of identical subarrays shifted in space. Performance bounds are computed in the presence of additive complex noncircular Gaussian noise.


source localization, tensors, diversity, coherence, antenna array processing, low-rank approximation, complex Cramér-Rao bounds, non circularity.

Extended abstract
1. Introduction
2. Vision du problème comme décomposition tensorielle
3. Existence et unicité
4. Estimation conjointe des DoA et des signaux sources
5. Bornes de Cramér-Rao complexes
6. Calcul des bornes de Cramér-Rao en présence de bruit non circulaire
7. Simulations numériques
8. Conclusion

Abo H., Ottaviani G., Peterson C. (2009). Induction for secant varieties of Segre varieties. Trans. Amer. Math. Soc., p. 767–792. Consulté sur http://web.math.unifi.it/users/ottavian/ public.html (arXiv :math/0607191)

Bienvenu G., Kopp L. (1983, octobre). Optimality of high-resolution array processing using the eigensystem approach. IEEE Trans. ASSP, vol. 31, no 5, p. 1235–1248.

Bos A. van den. (1994, octobre). A Cramér-Rao bound for complex parameters. IEEE Trans. Sig. Proc., vol. 42, no 10, p. 2859.

Catalisano M. V., Geramita A. V., Gimigliano A. (2005). Higher secant varieties of the Segre varieties. Journal of Pure and Applied Algebra, vol. 201, no 1-3, p. 367–380.

Comon P. (1986, avril). Estimation multivariable complexe. Traitement du Signal, vol. 3, no 2, p. 97–101. Consulté sur http://hdl.handle.net/2042/1600 (hal-00979476)

Comon P. (2009, Aug. 31 - Sep. 3). Tensors, usefulness and unexpected properties. In 15th IEEE workshop on statistical signal processing (ssp’09), p. 781–788. Cardiff, UK. Consulté sur http://www.ssp2009.org/keynote-talks.html (keynote. hal-00417258)

Comon P. (2014, mai). Tensors a brief introduction. IEEE Sig. Proc. Magazine, vol. 31, no 3. (special issue on BSS. hal-00923279)

Comon P., Golub G. H. (1990, août). Tracking of a few extreme singular values and vectors in signal processing. Proceedings of the IEEE, vol. 78, no 8, p. 1327-1343. ((published from Stanford report 78NA-89-01, feb 1989))

Comon P., Luciani X., De Almeida A. L. (2009). Tensor decompositions, alternating least squares and other tales. Journal of Chemometrics, vol. 23, no 7-8, p. 393–405.

De Lathauwer L.  (2006).  A link between canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM Journal on Matrix Analysis, vol. 28, no 3, p. 642–666.

Donoho D. L., Elad M. (2003, mars). Optimally sparse representation in general (nonorthogo- nal) dictionaries via l1 minimization. Proc. Nat. Acad. Sci., vol. 100, no 5, p. 2197–2202.

Gribonval R., Nielsen M. (2003, décembre). Sparse representations in unions of bases. IEEE Trans. Information Theory, vol. 49, no 12, p. 3320–3325.

Hjørungnes A., Gesbert D. (2007, juin). Complex-valued matrix differentiation : Techniques and key results. IEEE Trans. Sig. Proc., vol. 55, no 6, p. 2740–2746.

Kiers H. A. L. (2000). Towards a standardized notation and terminology in multiway analysis. J. Chemometrics, p. 105–122.

Krim H., Viberg M. (1996, juillet). Two decades of array signal processing research. IEEE Sig. Proc. Mag., p. 67–95.

Lim L.-H., Comon P. (2014, février). Blind multilinear identification. IEEE Trans. Inf. Theory, vol. 60, no 2, p. 1260–1280. (open access)

Liu X., Sidiropoulos N. (2001). Cramér-Rao lower bounds for low-rank decomposition of multidimensional arrays. IEEE Trans. Sig. Proc., vol. 49, no 9, p. 2074–2086.

Madsen K., Nielsen H., Tingleff O. (2004). Methods for non-linear least squares problems. Informatics and Mathematical Modeling. Technical University of Denmark.

Nocedal J., Wright S. J. (2006). Numerical optimization. Springer.

Ottersten B., Viberg M., Kailath T. (1991). Performance analysis of the total least squares ESPRIT algorithm. IEEE Trans. Sig. Proc., vol. 39, no 5, p. 1122–1135.

Pesavento M., Gershman A. B., Wong K. M. (2002, septembre). Direction finding in partly calibrated sensor arrays composed of multiple subarrays. IEEE Trans. Signal Proc., vol. 50, no 9, p. 2103–2115.

Roy R., Kailath T. (1989, juillet). ESPRIT - estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Proc., vol. 37, p. 984–995.

Sahnoun S., Djermoune E.-H., Soussen C., Brie D. (2012, March). Sparse multidimensional modal analysis using a multigrid dictionary refinement. EURASIP J. Adv. Signal Process.. Consulté sur http://asp.eurasipjournals.com/content/2012/1/60

Schmidt R. O. (1986, mars). Multiple emitter location and signal parameter estimation. IEEE Trans. Antenna Propagation, vol. 34, no 3, p. 276–280.

Sidiropoulos N. D., Bro R., Giannakis G. B. (2000, août). Parallel factor analysis in sensor array processing. IEEE Trans. Sig. Proc., vol. 48, no 8, p. 2377–2388.

Smilde A., Bro R., Geladi P. (2004). Multi-way analysis. Chichester UK, Wiley.

Stoica P., Babu P., Li J. (2011). SPICE : A sparse covariance-based estimation method for array processing. IEEE Trans. Signal Process., vol. 59, no 2, p. 629-638.

Stoica P., Nehorai A. (1989). MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Trans. Acoust. Speech Sig. Proc., vol. 37, no 5, p. 720–741.

Swindlehurst A. L., Ottersten B., Roy R., Kailath T. (1992, avril). Multiple invariance ESPRIT. IEEE Trans. Signal Proc., vol. 40, no 4, p. 867–881.

Tichavsky P., Phan A. H., Koldovsky Z. (2013). Cramér-Rao-induced bounds for Cande- comp/Parafac tensor decomposition. IEEE Trans. on Signal Processing.

Tomasi G., Bro R. (2006). A comparison of algorithms for fitting the Parafac model. Comp. Stat. Data Ana., vol. 50, no 7, p. 1700–1734.

Trees H. L. van. (2002). Optimum array processing (vol. IV). New York, Wiley.