Problématique de l’Idempotence pour les Images Couleurs et Multivaluées

Problématique de l’Idempotence pour les Images Couleurs et Multivaluées

Rania Goutali Noël Richard  Audrey Ledoux  Noureddine Ellouze 

École Nationale d’Ingénieurs de Tunis, Université de Tunis El Manar Laboratoire Automatique et Traitement du Signal Campus Universitaire du Manar 1002, Tunisie

Université de Poitiers, Laboratoire XLIM-SIC UMR CNRS 7252 SP2MI, Bd Marie et Pierre Curie, Téléport 2, 86962 Futuroscope Cedex, France

Page: 
293-305
|
DOI: 
https://doi.org/10.3166/TS.31.293-305
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The morphological filters require to enable idempotence and growing properties before to be used. If the proof of these properties is natural on uni-dimensional values, it is not the same for vectors. This work covers the validation of idempotence property for opening and closing operators. In the framework of a distance based ordering, we show why this property is not enabled, then we propose a modified writing form solving this problem and a generic framework to write vectorial ordering functions.

Extended Abstract

Mathematical morphology allows to develop all the possible image processing tools, just using basic operations like erosion, dilation and complementary transforms. The ordering is at the core of the mathematical morphology to construct the lattices required to develop the mathematical construction. However,ordering colour or multivariate data is not straight forward, especially when the physical or perceptual constraints of the data, typically the colour, must be respected. 

In Ledoux, Richard, Capelle-Laizé (2012), an adapted construction for colour ordering respecting the human visual systems properties was proposed and compared with other approaches. This new ordering scheme respect all the required properties to produce a total order and to develop high level processing computed in a vector way, as texture features and Hit-or-Miss transformsLedoux etal.(2013).This work address the following level. To construct advance morphological filters and processing, a new set of morphological properties must be verified, including the idempotency and the growing properties. If the proof of these properties is natural on uni-dimensional values, it is not the same for vectors.

In the framework of a distance based ordering, we show that the construction proposed by Ledoux, Richard, Capelle-Laizé (2012) don’t allow to enable the idempotency property. Due to the dual construction used to extract the maximum and the minimum operation, the idempotency is not reachable without modifications on the expression. This modification must link in the n-dimensional space the maximum as being the minimum for the dual operator and inversely. Thanks to this result we expresses the generic framework to develop a new ordering scheme based on perceptual distance functions, respecting the fundamentals of the ordering, duality and idempotency.

RÉSUMÉ

Le filtrage morphologique avancé nécessite que certaines propriétés soient validées avant d’être utilisées : idempotence et croissance. Si la preuve de ces propriétés est directe sur des objets unidimensionnels, iln’en est pas de même sur des objets multivalués. Ce travail porte sur la validation de la propriété d’idempotence des opérateurs d’ouverture et de fermeture couleur. Pour l’ordonnancement basé distance, nous montrons pourquoi cette propriété n’est pas vérifiée, nous proposons ensuite une modification résolvant ce problème puis un cadre générique d’écriture des fonctions d’ordonnancement vectorielles. 

Keywords: 

mathematical morphology, idempotence, duality, ordering, distance.

MOTS-CLÉS

morphologie mathématique, idempotence, dualité, ordonnancement, distance. 

1. Introduction
2. Morphologie Mathématique Couleur et Multivaluée
3. La Propriété d’Idempotence
4. Analyse et Résolution de la Perte d’Idempotence
5. Conclusion et Perspectives
  References

AnguloJ. (2007). Morphologicalcolouroperatorsintotallyorderedlatticesbasedondistances: Application to image filtering, enhancement and analysis. Computer Vision and Image Understanding, vol. 107, no 1-2, p. 56–73.

AptoulaE.,LefèvreS. (2007). Acomparativestudyonmultivariatemathematicalmorphology. Pattern Recognition, vol. 40, p. 2914-2929.

Busin L., Vandenbroucke N., Macaire L. (2008). volume 151 of advances in imaging and electron physics. In, p. 65–168. Orlando (FL -USA), Elsevier Inc.

CIE. (2008, december). Colorimetry - part 4: Cie 1976 l*a*b* colour spaces. Rapport technique. Vienna (Austria) : Auteur.

Hanbury A., Serra J. (2001, December). Morphological operators on the unit circle. IEEE Transactions on Image Processing, vol. 10, no 12, p. 1842-1850.

Hanbury A., Serra J. (2002). Mathematical morphology in the cielab space. Journal of Image Analysis and Stereology, vol. 21, p. 201-206.

Ledoux A. (2103). Vers des traitements morphologiques couleur et spectraux valides au sens perceptuel et physique : méthodes et critères de sélection. Thèse de doctorat, Université de Poitiers, Laboratoire XLIM-département SIC, Futoroscope (France).

Ledoux A., Richard N., Capelle-Laizé A. (2011). Limitations et comparaisons d’ordonnancement utilisant des distances couleur. Traitement et Analyse de l’Information, Méthodes et Applications (TAIMA), vol. 2, p. 325–330.

Ledoux A., Richard N., Capelle-Laizé A. (2012, May). The fractal estimator : A validation criterion for the colour mathematical morphology. In Proceeedings of the 6th european conference on colour in graphics, p. 206-210. Amsterdam, IS&T.

Ledoux A., Richard N., Capelle-Laizé A., Fernandez-Maloigne C. (2012, November). Color hit-or-misstransformondermatologicalimages. InTwentiethcolorandimagingconference, p. 164–169. Los-Angeles, IS&T.

Ledoux A., Richard N., Capelle-Laizé A., Fernandez-Maloigne C. (2013). Perceptual color hit-or-miss transform : application to dermatological image processing. Signal, Image and Video Processing (SIVP), SPRINGER-VERLAG, p. 1–11.

Lopez J. (2010, January). Geometric algebra colour image representations and derived total orderings for morphological operators - part 1: Colour quaternions. Journal of Visual Communication and Image Representation, vol. 21, no 1, p. 33–48.

Louverdis G., Vardavoulia M. I., Andreadis I., Tsalides P. (2002, August). A new approach to morphological color image processing. Pattern Recognition, vol. 35, no 8, p. 1733-1741.

Plaza A., Martinez P., Perez R., Plaza J. (2004). A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles. Pattern Recognition, vol. 37, no 6, p. 1097 - 1116. Consulté sur http://www.sciencedirect.com/science/article/ B6V14-4BYJVM1-3/2/9f2a53c2464ad11d28a2f1478d401187

Richard N., Capelle A., Fernandez-Maloigne C. (2009, Aout). A complete scheme for colour morphology with perceptual integration-. In Spie09, special session on signal and image processing, vol. 7443, p. 1–9. San-José (USA), SPIE. (DOI: 10.1117/12.826063)

Serra J. (1982). Image analysis and mathematical morphology (vol. I). London, Academic Press.

Shih F. (2009). Image processing and mathematical morphology fundamentals and applications. Boca Raton, CRC Press.

Soille P., Rivest J.-F. (1996, September). On the validity of fractal dimension measurements in image analysis. Journal of Visual Communication and Image Representation, vol. 7, no 3, p. 217–229.

Sternberg S. (1986, September). Grayscale morphology. Computer Vision, Graphics, and Image Processing, vol. 35, no 3, p. 333-355.