Approches géométriques pour l’estimation des fractions d’abondance en traitement de données hyperspectrales

Approches géométriques pour l’estimation des fractions d’abondance en traitement de données hyperspectrales

Paul Honeine Cédric Richard  Nguyen Hoang Nguyen 

Institut Charles Delaunay (UMR CNRS 6279), équipe LM2S Université de Technologie de Troyes 12, rue Marie Curie, F-10000 Troyes

Laboratoire Lagrange (UMR CNRS 7293), Observatoire de la Côte d’Azur Université de Nice Sophia-Antipolis Parc Valrose, F-06108 Nice

Institut Universitaire de France

Corresponding Author Email: 
paul.honeine@utt.fr
Page: 
61-86
|
DOI: 
https://doi.org/10.3166/TS.30.61-86
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

In hyperspectral image unmixing, a collection of pure spectra, the so-called endmembers, is identified and their abundance fractions are estimated at each pixel. While endmembers are often extracted using a geometric approach, the abundances are usually estimated by solving an inverse problem. In this paper, we bypass the problem of abundance estimation by using a geometric point of view. The proposed framework shows that a large number of endmember extraction techniques can be adapted to jointly estimate the abundance fractions, with no additional computational complexity. This is illustrated in this paper with the N-Findr, SGA, VCA, OSP, and ICE endmember extraction techniques. A nonlinear extension is also proposed, using non linear dimension reduction methods such as MDS, LLE and ISOMAP. These strategies maintain the geometric unmixing algorithms unchanged, for endmember extraction as well as abundance fraction estimation. The relevance of the proposed approach is illustrated through experiments on synthesized data and real hyperspectral image.

RÉSUMÉ

De récentes études ont montré l’avantage de l’approche géométrique en démélange de données hyperspectrales. Elle permet d’identifier les signatures spectrales des composants purs. Jusqu’ici, l’estimation des fractions d’abondance a toujours été réalisée dans un second temps, par résolution d’un problème inverse généralement. Dans cet article, nous montrons que les techniques géométriques d’extraction des composants purs de la littérature permettent d’estimer conjointement les fractions d’abondance, pour un coût calculatoire supplémentaire négligeable. Pour ce faire, un socle commun d’interprétations géométriques du problème est proposé, que l’on peut décliner pour mieux l’adapter à la technique d’extraction de composants purs retenue. Le caractère géométrique de l’approche lui confère une flexibilité très appréciable dans le cadre de techniques de démélange géométrique, illustrée ici avec NFindr, SGA, VCA, OSP et ICE. Une extension non linéaire est proposée, en utilisant des techniques de réduction de dimensionnalité par apprentissage de variétés, illustrée avec les algorithmes MDS, LLE et ISOMAP. Une telle approche permet de maintenir inchangés les algorithmes géométriques d’identification des composants purs et d’estimation de la proportion de ces derniers dans le mélange. La pertinence de cette approche est illustrée par des expérimentations sur des données synthétisées et réelles.

Keywords: 

hyperspectral data processing, nonlinear unmixing, geometric unmixing methods, abundance estimation, dimensionality reduction techniques, geodesic distance

MOTS-CLÉS

traitement de données hyperspectrales, démélange non linéaire, approches géométriques, réduction de dimension, distance géodésique

1. Introduction
2. Méthodes De Démélange Linéaires
3. Techniques D’estimation Des Fractions D’abondance Par La Géométrie
4. Du Linéaire Au Non Linéaire
5. Expérimentations
6. Conclusion Et Perspectives
  References

Berman M., Kiiveri H., Lagerstrom R., Ernst A., Dunne R., Huntington J. F. (2004). ICE: a statistical approach to identifying endmembers in hyperspectral images. IEEE Trans. Geoscience and Remote Sensing, vol. 42, no 10, p. 2085–2095.

Bioucas-Dias J. M., Plaza A., Dobigeon N., Parente M. et al. (2012, April). Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Topics Appl. Earth Observations and Remote Sens., vol. 5, no 2, p. 354–379.

Chan T.-H., Ma W.-K., Ambikapathi A.-M., Chi C.-Y. (2011). A simplex volume maximization framework for hyperspectral endmember extraction. IEEE Transactions Geoscience and Remote Sensing, vol. 49, no 11, p. 4177-4193.

Chang C., Du Q. (2004, March). Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans. Geoscience and Remote Sensing, vol. 42, no 3, p. 608-619.

Chang C., Wuand C.-C., Liu W.-M., Quyang Y.-C. (2006, October). A new growing method for simplex-based endmember extraction algorithm. IEEE Trans. Geoscience and Remote Sensing, vol. 44, no 10, p. 2804-2819.

Chen J., Richard C., Ferrari A., Honeine P. (2013, May). Nonlinear unmixing of hyperspectral data with partially linear least-squares support vector regression. In Proc. 38th IEEE international conference on acoustics, speech and signal processing. Vancouver, Canada.

Chen J., Richard C., Honeine P. (2011a, 6–9 November). A novel kernel-based nonlinear unmixing scheme of hyperspectral images. In Proc. 45th asilomar conference on signals, systems, and computers, p. 1898-1902. Pacific Grove (CA), USA.

Chen J., Richard C., Honeine P. (2011b, September). Un nouveau paradigme pour le démélange non-linéaire des images hyperspectrales. In Actes du 23e colloque gretsi sur le traitement du signal et des images. Bordeaux, France.

Chen J., Richard C., Honeine P. (2012, 4-7 June). Nonlinear unmixing of hyperspectral images based on multi-kernel learning. In Proc. IEEE workshop on hyperspectral image and signal processing : Evolution in remote sensing. Shanghai, China.

Chen J., Richard C., Honeine P. (2013a, 25-28 June). Estimating abundance fractions of materials in hyperspectral images by fitting a post-nonlinear mixing model. In Proc. IEEE workshop on hyperspectral image and signal processing : Evolution in remote sensing. Gainesville, Florida, USA.

Chen J., Richard C., Honeine P. (2013b, January 15). Nonlinear unmixing of hyperspectral data based on a linear-mixture/nonlinear-fluctuation model. IEEE Transactions on Signal Processing, vol. 61, no 2, p. 480–492.

Chen J., Richard C., Honeine P. (accepted, 2013). Nonlinear estimation of material abundances of hyperspectral images with ℓ1-norm spatial regularization. IEEE Transactions on Geoscience and Remote Sensing.

Clark R. N., (2007). USGS digital spectral library splib06a [electronic resource] Book, Online. U.S. Geological Survey, Denver, CO, US.

Cox T. F., Cox M. A. A. (2000). Multidimensional scaling (2nd Edition éd.). London, Chapman and Hall / CRC.

Du Q., Raksuntorn N., Younan N. H., King R. L. (2008). Variants of n-findr algorithm for endmember extraction. In Proc. SPIE - image and signal processing for remote sensing XIV.

Green A. A., Berman M., Switzer P., Craig M. D. (1988, janvier). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, vol. 26, no 1, p. 65–74. Consulté sur http://dx.doi.org/10.1109/36.3001

Harsanyi J. C., Chang C.-I. (1994). Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Trans. Geoscience and Remote Sensing, vol. 32, no 4, p. 779–785.

Heinz D., Chang C. (2001, March). Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geoscience and Remote Sensing, vol. 39, no 3, p. 529-545.

Heylen R., Burazerovic D., Scheunders P. (2011). Nonlinear spectral unmixing by geodesic simplex volume maximization. IEEE Journal of Selected Topics in Signal Processing, vol. 5, no 3, p. 534-542.

Heylen R., Scheunders P. (2012). Calculation of geodesic distances in non-linear mixing models: demonstration on the generalized bilinear model. IEEE Geoscience and Remote Sensing letters, vol. 9, no 4, p. 644–648.

Honeine P., Lantéri H. (2013, 25-28 June). Constrained reflect-then-combine methods for unmixing hyperspectral data. In Proc. IEEE workshop on hyperspectral image and signal processing : Evolution in remote sensing. Gainesville, Florida, USA.

Honeine P., Richard C. (2009, September). Solving the pre-image problem in kernel machines: a direct method. In Proc. 19th IEEE workshop on machine learning for signal processing. Grenoble, France.

Honeine P., Richard C. (2010, 25 - 30 July). A simple scheme for unmixing hyperspectral data based on the geometry of the n-dimensional simplex. In Proc. IEEE international geoscience and remote sensing symposium. Honolulu (Hawaii), USA.

Honeine P., Richard C. (2011a, September). Approches géométriques pour l’estimation des fractions d’abondance en traitement de données hyperspectales. In Actes du 23e colloque gretsi sur le traitement du signal et des images. Bordeaux, France.

Honeine P., Richard C. (2011b, December). A closed-form solution for the pre-image problem in kernel-based machines. Journal of Signal Processing Systems, vol. 65, no 3, p. 289–299.

Honeine P., Richard C. (2011c). Preimage problem in kernel-based machine learning. IEEE Signal Processing Magazine, vol. 28, no 2, p. 77–88.

Honeine P., Richard C. (2012, June). Geometric unmixing of large hyperspectral images: a barycentric coordinate approach. IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no 6, p. 2185–2195.

Jolliffe I. (1986). Principal component analysis. Springer, New York, NY.

Keshava N., Mustard J. F. (2002). Spectral unmixing. IEEE Signal Processing Magazine, vol. 19, no 1, p. 44—57.

Kruskal J. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, vol. 29, no 1, p. 1—27.

Kruskal J. (1964b). Nonmetric multidimensional scaling: A numerical method. Psychometrika, vol. 29, no 2, p. 115–129.

Lantéri H., Roche M., Cuevas O., Aime C. (2001, May). A general method to devise maximumlikelihood signal restoration multiplicative algorithms with non-negativity constraints. Signal Processing, vol. 81, p. 945–974.

Lawson C. L., Hanson R. J. (1987). Solving least squares problems (classics in applied mathematics). Society for Industrial Mathematics.

Lee J., Woodyatt A., Berman M. (1990, May). Enhancement of high spectral resolution remote sensing data by a noise-adjusted principal components transform. IEEE Trans. Geoscience and Remote Sensing, vol. 28, p. 295–304.

Luo W., Zhong L., Zhang B. (2008). Null subspace analysis for spectral unmixing in hyperspectral remote sensing. In Proc. congress on image and signal processing, vol. 4, p. 763–767. Washington, DC, USA, IEEE Computer Society.

Nascimento J. M. P., Dias J. M. B. (2004). Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geoscience and Remote Sensing, vol. 43, no 4, p. 898–910.

Nguyen N. H., Chen J., Richard C., Honeine P., Theys C. (2013). Supervised nonlinear unmixing of hyperspectral images using a pre-image method. In New concepts in imaging: Optical and statistical models, in Eds. D. Mary, C. Theys, and C. Aime, vol. 59, p. 417–437. EDP Sciences. Consulté sur http://dx.doi.org/10.1051/eas/1359019

Nguyen N. H., Richard C., Honeine P., Theys C. (2012, 22 - 27 July). Hyperspectral image unmixing using manifold learning: methods derivations and comparative tests. In Proc. IEEE international geoscience and remote sensing symposium, p. 3086–3089. Munich, Germany.

Ren H., Chang C.-I. (2003, octobre). Automatic spectral target recognition in hyperspectral imagery. IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no 4, p. 1232–1249.

Roweis S. T., Saul L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. SCIENCE, vol. 290, p. 2323–2326.

Sommerville D. M. Y. (1958). An introduction to the geometry of N dimensions. New York, Dover.

Strang G. (2003). Introduction to Linear Algebra (3rd éd.). Wellesly-Cambridge Press.

Tenenbaum J. B., Silva V., Langford J. C. (2000, 22 December). A global geometric framework for nonlinear dimensionality reduction. SCIENCE, vol. 290, no 5500, p. 2319–2323.

Torgerson W. S. (1952). Multidimensional scaling: I. theory and method. Psychometrika, vol. 17, p. 401-419.

Winter M. (1999). N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. Proc. of SPIE: Imaging Spectrometry V, vol. 3753, no 10.