Capteurs infrarouge intelligents

Capteurs infrarouge intelligents

Matthieu Denoual Mathieu Pouliquen  Gilles Allègre 

Groupe de REcherche en Informatique, Image, Automatique et Instrumentation de Caen (GREYC) UMR-6072 6 bd Maréchal Juin F-14050 Caen cedex, France

Corresponding Author Email: 
mdenoual@ensicaen.fr
Page: 
367-400
|
DOI: 
https://doi.org/10.3166/TS.30.367-400
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

This paper presents how resistive bolometers, which are the elementary parts of almost all existing infrared imaging systems, can be upgraded into smart-sensors. The intelligence distributed at the pixel level compensates some intrinsic limitations of these passive sensors. It also comes up with new features called smart-functions and enables enhanced performance.

RÉSUMÉ

Dans le contexte de l’imagerie infrarouge, cet article présente comment les bolomètres résistifs, constituants élémentaires de la quasi-totalité des imageurs actuels, peuvent être améliorés en des capteurs infrarouge intelligents. L’intelligence ainsi distribuée au niveau de chacun des pixels permet de compenser certaines des limitations intrinsèques de ces détecteurs passifs. Elle apporte aussi à ce type d’imageurs de nouvelles fonctionnalités qualifiées d’évoluées et ouvre la perspective de performances accrues.

Keywords: 

infrared sensor, bolometer, electrical substitution, smart function, configurability, diagnostic

MOTS-CLÉS

capteur infrarouge, bolomètre, substitution électrique, fonctionnalités évoluées, configurabilité, diagnostic

1. Introduction
2. Bolomètres Résistifs Non Refroidis
3. Détecteurs Infrarouge Intelligents
4. Conclusion
  References

Allègre G., Guillet B., Robbes D., Méchin L., Lebargy S., Nicoletti S. (2007). Room temperature Si3N4/SiO2 membrane-type electrical substitution radiometer using thin film platinum thermometers. Measurement Sciences and Technology, vol. 18, n°1, p. 183-189.

Astrom K., Hagglund T. (1995). PID controllers: Theory, design and tuning. Research Triangle Park, NC. Instrument Society of America.

Astrom K., Wittenmark B. (1996). Computer controlled systems: theory and design. Prentice Hall International Editions, 3rd edition.

Benezeth Y., Emile B., Laurent H., Rosenberger C. (2011). Towards a sensor for detecting human presence and characterizing activity. Energy and Buildings, vol. 43(2), p. 305-314.

Chamming’s G. (2008). Capteur d’image thermique matriciel à pixel bolométrique et procédé de réduction de bruit spécial, EP2059030.

Comte-Bellot G. (1976). Hot wire anemometry. Annual Review of Fluid Mechanism, vol. 8, p. 209-231.

Davis J. W., Sharma V. (2004). Robust background-subtraction for person detection in thermal imagery. IEEE Int. Workshop on Object Tracking and Classification Beyond the Visible Spectrum.

Davis J. W., Keck M. A. (2005). A two-stage template approach to person detection in thermal imagery. IEEE Workshop on Applications of Computer Vision, vol. 1, p. 364-369.

Denoual M., Delaunay S., Robbes D. (2009a). Bolometer with heat feedback, WO/2009/034066.

Denoual M., Allègre G., Delaunay S., Robbes D. (2009b). Capacitively coupled electrical substitution for resistive bolometer enhancement. Measurement Science and Technology,vol. 20, 015105.

Denoual M., Lebargy S., Allègre G. (2010). Digital implementation of the capacitively coupled electrical substitution for resistive bolometers. Measurement Science and Technology, vol. 21, 015205.

Denoual M., Attia P. (2010). VHDL pour la modélisation comportementale d’un synthétiseur de fréquence. Revue 3EI, n° 63, p. 60-71.

Denoual M., de Sagazan O., Attia P., Allègre G. (2012). Smart Bolometer : Toward Monolithic Bolometer with Smart Functions in Bolometers Intech.

Dupont B., Robert P., Dupret A., Villard P., Pochic D. (2007). Model based on-chip 13bits ADC design dedicated to uncooled infrared focal plane arrays. Proc. of SPIE ElectroOptical and Infrared Systems: Technology and Applications IV, vol. 673712.

Fièque B., Tissot J.L., Trouilleau C., Crastes A., Legras O. (2007). Uncooled microbolometer detector : Recent developments at Ulis. Infrared Physics & Tech., vol. 49, p. 187-191.

Frank R. (2000). Understanding smart sensors. Artech House Inc.

Franklin G., Powell J., Workman M. (1997). Digital control of dynamic systems. 3rd edition, Addison Wesley publishing company.

Freire R.C.S., Catunda S.Y.C., Luciano B.A. (2009). Applications of thermoresistive sensors using the electric equivalence principle. IEEE transactions on Instrumentation and Measurement, vol. 58, n°6, p. 1823-1830.

Freymuth P. (1967). Feedback control theory for constant temperature hot-wire anemometers. Review of Scientific Instruments, vol. 38, n°5, p. 677–681.

Galeazzi M. (1998). An external electronic feedback system applied to a cryogenic µ-calorimeter. Review of Scientific Instruments, vol. 69, n°5, p. 2017-2023.

Galeazzi M., McCammon, D. (2003). Microcalorimeter and bolometer model. Journal of Applied Physics, vol. 93, n° 8, p. 4856-4869.

Gaussorgues G. (1996a). Applications industrielles de l’infrarouge. Technique de l’ingénieur, TI-e4130.

Gaussorgues G. (1996b). Détecteurs infrarouges. Technique de l’ingénieur, TI-e4060.

Guellec F., Villard P., Rothan F., Alacoque L., Chancel C., Martin P. Castelein P., Maillart P.,

Pistone F., Costa P. (2007). Sigma-delta column-wise A/D conversion for cooled ROIC. Proc of SPIE Infrared Technology and Applications XXXIII, vol. 6542.

Kruse P.W. (2001). Uncooled Thermal Imaging: Arrays, Systems and Applications. Bellingham, WA: SPIE Optical Engineering Press.

Landau I. (2001). Identification des systèmes. Editions Hermès.

Ljung L. (1999). System identification: theory for the user. Prentice Hall, Upper Saddle River, N. J.

Miller I.S., Shah D.A., Antonia R.A. (1987). A constant temperature hot-wire anemometer. Journal of Physics E: Scientific Instruments, vol. 20, p. 549-553.

Rice J. P. (2000). An electrically substituted bolometer as a transfer-standard detector. Metrologia, vol. 37, p. 433-436.

Richards P.L. (1994). Bolometers for infrared and millimeter waves. Journal of Applied Physics, vol. 76, p. 1-24.

Robert P., Dupont B., Pochic D. (2008). Design trade-offs in ADC architectures dedicated to uncooled focal plane arrays. Proc. of SPIE Infrared Technology and Applications XXXIV, vol. 6940.

Sherlock R. A., Wyatt A. F. G. (1983). The dynamics of the constant temperature detector system. Journal of Physics E: Scientific Instruments, vol. 16, p. 669-672.

Tchagaspanian M., Villard P., Dupont B., Chamming’s G. Martin J.L., Pistre C., Lattard D., Chantre C. Arnaud A., Yon J.J. (2007). Design of ADC in 25 µm pixels pitch dedicated for IRFPA image processing at LETI. Infrared Technology and Applications XXXIII, Proc. of SPIE Defense and Security, vol. 6542-80.

Williams C. D. H. (1990). An appraisal of the noise performance of constant temperature bolometric detector systems. Measurement Science and Technology, vol. 1, p. 322-328.

Würfel D., Ruβ M., Lerch R., Weiler D., Yang P., Vogt H. (2011). An uncooled VGA-IRFPA with novel readout architecture. Advanced Radio Science, vol. 9, p. 107-110.

Xenics (2012). Gobi-384 Smart and affordable Gobi-384 simplifies the way you work. http://www.xenics.com/documents/20120403_Gobi-384_Scientific_LowRes.pdf

Yole Développement (2010). Uncooled IR Cameras & Detectors for Thermography and Vision. Technologies & Market Report, juin 2010.