Projet IMPALA - Radar panoramique hyperfréquence pour la localisation et la cartographie simultanées en environnement extérieur

Projet IMPALA

Radar panoramique hyperfréquence pour la localisation et la cartographie simultanées en environnement extérieur

Marie-Odile Monod Roland Chapuis  Philippe Gosset  Raphaël Rouveure  Damien Vivet  Franck Gérossier  Patrice Faure  Paul Checchin  Laure Moiroux  Pierre Guérin  Thierry Humbert  Joël Morillon 

IRSTEA-Cemagref, Unité de Recherche TSCF 24 avenue des Landais, BP 50085 F-63172 Aubière cedex

LASMEA - Institut Pascal, CNRS-UMR 6602 24 avenue des Landais F-63177 Aubière

THALES Optronique S.A. 2 avenue Gay-Lussac, CS 90502 F-78995 Elancourt cedex

Corresponding Author Email: 
marie-odile.monod@irstea.fr
Page: 
463-492
|
DOI: 
https://doi.org/10.3166/TS.29.463-492
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

The main objective of the project IMPALA is to demonstrate that radar technology is an alternative solution to classical perception systems used in outdoor mobile robotics. This paper presents the rotating FMCW radar developed during the project and results from the combined use of radar and “Simultaneous Localization And Mapping” (SLAM) techniques in outdoor environment. Range and velocity from mobile objects can be extracted, which lead to future applications of DATMO (Detection And Tracking of Moving Objects) the first results are presented here.

RÉSUMÉ

L’objectif du projet IMPALA est d’évaluer l’apport du radar comme solution alternative aux moyens de perception en robotique mobile d’extérieur. Cet article illustre à travers une application de localisation et de cartographie simultanées (SLAM), les potentialités d’un radar panoramique à modulation de fréquence (FMCW) qui a été développé au cours du projet. Donnant accès à l’information de distance et de vitesse des entités mobiles présentes dans l’environnement, le radar permet d’envisager des applications de détection et de suivi d’objets mobiles (DATMO) dont un premier résultat est présenté ici.

Keywords: 

radar, FMCW, mapping, localization, SLAM, DATMO

MOTS-CLÉS

radar, FMCW, cartographie, localisation, SLAM, DATMO

Extended Abstract
1. Introduction
2. Le Radar IMPALA
3. La Plateforme Expérimentale R-Trooper
4. SLAM Et DATMO Radar
5. Conclusion
  References

Ait-Aider O., Andreff N., Lavest J.M., Martinet P. (2006). Simultaneous Object Pose and Velocity Computation Using a Single View from a Rolling Shutter Camera. European Conference On Computer Vision, Graz, Austria, p. 56-68.

Bailey T., Durrant-Whyte H. (2006). Simultaneous Localization and Mapping (SLAM): Part II - State of the Art. Robotics and Automation Magazine, vol. 13, n° 3, p. 108-117.

Bibby C., Reid I. (2007). Simultaneous Localisation and Mapping in Dynamic Environments (SLAMIDE) with Reversible Data Association. Robotics: Science and Systems, Atlanta, USA.

Blackman S., Popoli R. (1999). Design and Analysis of Modern Tracking Systems. Artech House, MA.

Bosse M., Zlot R. (2008). Map Matching and Data Association for Large-Scale Twodimensional Laser Scan-based SLAM. International Journal of Robotics Research, vol. 27, n° 6, p. 667-691.

Chandran M., Newman P., (2006). Motion Estimation from Map Quality with Millimeter Wave Radar. Conference on Intelligent Robots and Systems (IROS), Beijing, China, p. 808-813.

Checchin P., Gérossier F., Blanc C., Chapuis R., Trassoudaine L. (2009). Radar Scan Matching SLAM using the Fourier-Mellin Transform. International Conference on Field and Service Robots (FSR), Cambridge, USA.

Chen Z., Samarabandu J., Rodrigo R. (2007). Recent advances in simultaneous localization and map-building using computer vision. Advanced Robotics, vol. 21, n° 3, p. 233-265.

Clark S., Dissanayake G. (1999). Simultaneous localization and map building using millimeter wave radar to extract natural features. IEEE International Conference on Robotics & Automation, Detroit, USA, p. 1316-1321.

Dissanayake G., Newman P., Durrant-Whyte H., Clark S., Csobra M. (2001). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, vol. 17, n° 3, p. 229-241.

Dissanayake G., Newman P., Durrant-Whyte H., Clark S., Csorba M. (2000). An Experimental and Theoretical Investigation into Simultaneous Localization and Map Building, Lecture Notes in Control and Information Sciences: Experimental Robotics VI, p. 265-274.

Durrant-Whyte H., Pagac D., Rogers B., Stevens M., Nelmes G. (2007). Field and service applications - An autonomous straddle carrier for movement of shipping containers - From Research to Operational Autonomous Systems. IEEE Robotics and Automation Magazine, vol. 14, n° 3, p. 14-23.

Durrant-Whyte H., Bailey T. (2006). Simultaneous Localization and Mapping (SLAM): Part I - The Essential Algorithms. Robotics and Automation Magazine, vol. 13, n° 2, p. 99-110.

Hähnel D., Burgard W., Fox D., Thrun S. (2003). An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements. Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA, p. 206-211.

Ho K.L., Newman P. (2007). Detecting Loop Closure with Scene Sequences. International Journal of Computer Vision, vol. 74, n° 3, p. 261-286.

Howard A. (2008). Real-time stereo visual odometry for autonomous ground vehicles. Conference on Intelligent Robots and Systems (IROS), Nice, France, p. 3946-3952.

Howard A., Wolf D.F., Sukhatme G.S. (2004). Towards 3D Mapping in Large Urban Environments. Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, p. 419-424.

Jenkin M., Verzijlenberg B., Hogue A. (2010). Progress towards underwater 3D scene recovery. Conference on Computer Science and Software Engineering (CSSE), Wuhan, China, p. 123-128.

Jose E., Adams M. (2004). Millimetre Wave RADAR Spectra Simulation and Interpretation for Outdoor SLAM. IEEE International Conference on Robotics & Automation, New Orleans, USA, p. 1321-1326.

Kitt B., Geiger A., Lategahn H. (2009). Visual Odometry based on Stereo Image Sequences with RANSAC-based Outlier Rejection Scheme. IEEE Intelligent Vehicles Symposium, San Diego, USA, p. 486-492.

Leonard J., How J., Teller S., Berger M., Campbell S., Fiore G., Fletcher L., Frazzoli E., Huang A., Karaman S., Koch O., Kuwata Y., Moore D., Olson E., Peters S., Teo J., Truax R., Walter M., Barrett D., Epstein A., Maheloni K., Moyer K., Jones T., Buckley R., Antone M., Galejs R., Krishnamurthy S., Williams J. (2008). A Perception Driven Autonomous Urban Vehicle. Journal of Field Robotics, vol. 25, n° 10, p. 727-774.

Monod M.-O., Faure P., Rouveure R. (2009). Intertwined linear frequency modulated radar and simulator for outdoor robotics applications. IEEE International Radar Conference (RADAR), Bordeaux, France.

Monod M.-O. (1995). Frequency modulated radar: a new sensor for natural environment and mobile robotics. Ph.D. Thesis, Paris VI University, France.

Mullane J., Jose E., Adams M.D., Wijesoma W.S. (2007). Including Probabilistic Target Detection Attributes Into Map Representations. Journal of Robotics and Autonomous Systems, vol. 55, n° 1, p. 72-85.

Nistér D., Naroditsky O., Bergen J. (2006). Visual odometry for ground vehicle applications. Journal of Field Robotics, vol. 23, n° 1, p. 3-20.

Olson E. (2009). Real-time correlative scan matching. IEEE International Conference on Robotics and Automation (ICRA), Anchorage, USA, p. 4387-4393.

Pfaff P., Triebel R., Stachniss C., Lamon P., Burgard W., Siegwart R. (2007). Towards Mapping of Cities. IEEE International Conference on Robotics & Automation, Rome, Italy, p. 4807-4813.

Pretto A., Menegatti E., Bennewitz M., Burgard W., Pagello E. (2009). A Visual Odometry Framework Robust to Motion Blur. IEEE International Conference on Robotics and Automation (ICRA), Anchorage, USA, p. 1685-1692.

Reiher M., Yang. B. (2009). Derivation of the Frequency Mismatch Probability in Linear FMCW Radar based on Target Distribution. IEEE Radar Conference, Pasadena, USA.

Ribas D., Ridao P., Tardós J.D., Neira J. (2007). Underwater SLAM in a Marina Environment. Conference on Intelligent Robots and Systems (IROS), San Diego, USA, p. 1455-1460.

Rohling H. (1983). Radar CFAR thresholding in clutter and multiple target situations. IEEE Transactions on Aerospace and Electronic Systems, vol. 19, n° 4, p. 608-621.

Rouveure R., Monod M.-O., Faure P. (2009). High Resolution Mapping of the Environment with a Ground-Based Radar Imager. IEEE International Radar Conference (RADAR), Bordeaux, France.

Rouveure R., Monod M.-O., Faure P. (2008). Mapping of the environment with a high resolution ground- based radar imager. 14th IEEE Mediterranean Electrotechnical Conference, Ajaccio, France, p. 822-828.

Rouveure R., Faure P., Monod M.-O. (2006). A new radar sensor for mobile robot localization and mapping in extensive outdoor environment. First results. International Society for Photogrammetry and Remote Sensing (ISPRS) Commission 1 Symposium, Paris, France.

Vivet D., Checchin P., Chapuis R. (2012). Odométrie radar par analyse de la distorsion - Application à un véhicule roulant à vitesse élevée. Colloque Reconnaissance des Formes et l’Intelligence Artificielle (RFIA), Lyon, France.

Vivet D., Checchin P., Chapuis R. (2009). On the Fly Localization and Mapping Using a 360 Field-of-View Microwave Radar Sensor. Conference on Intelligent Robots and Systems (IROS), Saint Louis, USA.

Wang C.C. (2004). Simultaneous Localization, Mapping and Moving Object Tracking, Doctoral dissertation, tech. report CMU-RI-TR-04-23, Robotics Institute, Carnegie Mellon University.

Williams B., Reid I. (2010). On combining visual slam and visual odometry. IEEE International Conference on Robotics and Automation (ICRA), Anchorage, USA, p. 3494-3500.

Zhang S., Xie L., Adams M. (2004). An Efficient Data Association Approach to Simultaneous Localization and Map Building. IEEE International Conference on Robotics & Automation, New Orleans, USA, p. 854-859.