OPEN ACCESS
This paper introduces a novel scalable 3D mesh compression technique based on a shape approximation prediction strategy. The proposed approach, so-called Shape Approximation Compression (SAC), directly compresses the levels of detail (LoDs) defined by the content creators, while exploiting their inter-correlations. Here, the geometry of each LoD is used in order to compute a smooth approximation of the next layer. A progressive mesh hierarchy is then built on the top of the approximated version making it possible to efficiently predict and progressively transmit the geometry approximation errors. The SAC codec was evaluated within the framework of the MPEG Core Experiments activities on Multi-Resolution 3D Mesh Coding (MR3DMC) and was retained for future standardization.
RÉSUMÉ
Cet article introduit une nouvelle technique de compression de maillages 3D utilisant l’approximation de forme comme stratégie de prédiction. L’approche proposée, appelée Shape Approximation Compression (SAC), consiste à compresser directement les niveaux de détails définis par les créateurs de contenus, en exploitant leurs inter-correlations. La géométrie de chaque niveau est utilisée afin de calculer une approximation lisse du niveau de détails suivant. Une hiérarchie de maillages progressifs est ensuite construite à partir du maillage approché. Cela permet de prédire et de transmettre de façon efficace les erreurs d’approximation. Le codec SAC a été évalué par le groupe de travail ISO/MPEG sur le codage de maillage 3D multirésolution et a été retenu pour une normalisation future.
3D compression, MPEG, multi-resolution, approximation, progressive mesh
MOTS-CLÉS
compression 3D, MPEG, multirésolution, approximation, maillage progressif
Alliez P., Desbrun M. (2001). Progressive compression for lossless transmission of triangle meshes. In International conference on computer graphics and interactive techniques, p. 195-202.
Bjorck A. (1999). Numerical methods for least squares problems. Society for Industrial & Applied Mathematics,U.S.
Chen D., Cohen-Or D., Sorkine O., Toledo S. (2005). Algebraic analysis of high-pass quantization. ACM Transactions on Graphics, vol. 24, p. 1259-1282.
Cohen-Or D., Levin D., Remez O. (1999). Progressive compression of arbitrary triangular meshes. In Proceedings of the conference on visualization ’99, p. 67-72. Description of 3DG CE. (2010). In ISO/IEC JTC 1/SC29/WG11 w10885. Xiang, CN.
Gandoin P.-M., Devillers O. (2002). Progressive lossless compression of arbitrary simplicial complexes. ACM Transactions on Graphics, vol. 21, no 3, p. 372-379.
Garland M., Heckbert P. S. (1997). Surface simplification using quadric error metrics. In International conference on computer graphics and interactive techniques archive, p. 209-216.
Hoppe H. (1996). Progressive meshes. In Proceedings of the 23rd annual conference on computer graphics and interactive techniques, p. 99-108.
Lee H., Lavoué G., Dupont F. (2011). Rate-distortion optimization for progressive compression of 3D mesh with color attributes. International Journal of Computer Graphics.
Mammou K., Zaharia T., Preteux F. (2009). TFAN: A low complexity 3D mesh compression algorithm. Journal of Visualization and Computer Animation, vol. 20, no 2-3, p. 343-354.
Pajarola R., Rossignac J. (2000). Compressed progressive meshes. IEEE Transactions on Visualization and Computer Graphics, vol. 6, no 1, p. 79-93.
Peng J., Kim C.-S., Kuo C.-C. (2005, December). Technologies for 3D mesh compression: A survey. Journal of Visual Communication and Image Representation, vol. 16, no 6, p. 688-733.
Taubin G., Guéziec A., Horn W., Lazarus F. (1998). Progressive forest split compression. In International conference on computer graphics and interactive techniques, p. 123-132.
Touma C., Gotsman C. (1998). Triangle mesh compression. In Proceedings of graphics interface’98, p. 26-34.
Valette S., Prost R. (2004). A wavelet-based progressive compression scheme for triangle meshes : Wavemesh. IEEE Transactions on Visualization and Computer Graphics, vol. 10,no 2, p. 123-129.