Applications musicales du traitement de signal: synthèse et prospective
Musical Applications of Signal Processing: Synthesis and Prospect
OPEN ACCESS
This article aims at providing a synthesis of the musical applications of digital signal processing, of related research issues, and of future directions that emerge from recent works in that field. After introducing preliminary notions related to the music technical system and to the analysis of different digital representations of music information, it focuses on three main function types: audio synthesis and processing, sound spatialization and audio indexing and access technologies.
Résumé
L’objet de cet article est de proposer une synthèse des applications musicales du traitement de signal, des problématiques de recherche qui leur sont liées et des directions prospectives qui se dégagent sur la base de travaux récents dans ce domaine. Après l’exposé de notions préliminaires, relatives au système technique musical et à l’analyse des différentes représentations numériques des informations musicales, cette synthèse se concentre sur trois types de fonctions principales: la synthèse et le traitement des sons musicaux, la spatialisation sonore et les technologies d’indexation et d’accès.
Music, Digital Audio, Acoustics, Modeling, Sound Spatialization, Music Indexing, Music Information Retrieval, Knowledge Engineering
Mots clés
Musique, Signaux audionumériques, Acoustique, Modélisation, Spatialisation sonore, Indexation musicale, Recherche d’informations musicales, Ingénierie des connaissances
[1] ADRIEN J.M., The Missing Link: Modal Synthesis in Representations of Musical Signals, ss. la dir. de G. De Poli, A. Picalli et C. Roads, MIT Press, 1991.
[2] BENSOAM J., Représentation intégrale appliquée à la synthèse sonore par modélisation physique, Thèse de doctorat, Université du Maine (Le Mans, Académie de Nantes), 2003.
[3] BERKHOUT A. J., A Holographic Approach to Acoustic Control. Journal of the Audio Engineering Society, Vol. 36, N°12, 1988.
[4] BLAUERT J., Spatial Earing, The psychophysics of Human Sound Localization, MIT Press, 1997.
[5] BOGAARDS N., RÖBEL A., RODET X., Sound Analysis and Processing with AudioSculpt 2. Proc. Int. Computer Music Conf. (ICMC’04), 2004.
[6] CADOZ C., LUCIANI A., FLORENS J.-L., CORDIS-ANIMA: A Modeling and Simulation System for Sound and Image Synthesis- The General Formalism, Computer Music Journal, MIT Press, Vol. 17, N°1 Spring 1993.
[7] CADOZ, C., Continuum énergétique du geste au son, simulation multisensorielle interactive d’objets physiques, in Interfaces hommemachine et création musicale, ss. la dir. de H. Vinet et F. Delalande, Hermes Science, Paris, 2002.
[8] CHOWNING J., The synthesis of complex audio spectra by means of frequency modulation. Journal of the Audio Engineering Society, 21:526-534, 1973.
[9] CORTEEL E., Adaptations de la Wave Field Synthesis aux conditions réelles. Thèse de doctorat, Université Paris 6, 2004.
[10] DE CHEVEIGNÉ A., KAWAHARA H., YIN, a fundamental frequency estimator for speech and music. Journal of the Acoustical Society of America, Vol. 111, 2002.
[11] DELERUE O., Spatialisation du son et programmation par contraintes : le système MusicSpace. Thèse de doctorat, Université Paris 6, 2004.
[12] DOLSON M., LAROCHE J., Improved phase vocoder time-scale modification of audio, IEEE Transactions on Speech and Audio Processing, Vol. 7, N°3, 1999.
[13] HÉLIE T., Modélisation physique d'instruments de musique en systèmes dynamiques et inversion. Thèse de doctorat, Université Paris 11, 2002.
[14] HÉLIE T., MATIGNON D., Diffusive Representations for Analyzing and Simulating Flared Acoustic Pipes with Visco-thermal Losses, Mathematical Models and Methods in Applied Sciences, 16 (2006), pp. 503-536.
[15] HERRERA P., PEETERS G., DUBNOV S., Automatic Classification of Musical Sounds. Journal of New Musical Research, 2003.
[16] IOVINO F., CAUSSÉ, R., DUDAS R., Recent work around Modalys and Modal Synthesis. Proc. Int. Computer Music Conf. (ICMC’97), 1997.
[17] JOT J.M., Efficient Models for Distance and Reverberation Rendering in Computer Music and Virtual Audio Reality. Proc. Int. Computer Music Conf. (ICMC’97), 1997.
[18] JULLIEN J.-P. 1995., Structured Model for the Representation and the Control of Room Acoustical Quality. Proc. Int. Congress on Acoustics (ICA’95), 1995.
[19] MALHAM D.G., MYATT A., 3-D Sound Spatialization using Ambisonic Techniques. Computer Music Journal, Vol. 19 N°4, MIT Press, 1995.
[20] PEETERS G., RODET X., Non-stationary Analysis/Synthesis using Spectrum Peak Shape Distortion, Phase and Reassignment, Proc. Int. Conf. on Signal Processing Applications and Technology (ICSPAT’99), 1999.
[21] PEETERS G., Deriving Musical Structures from Signal Analysis for Music Audio Summary Generation: « Sequence » and « State » approach, Lecture Notes in Computer Science, Vol. 2771, Springer Verlag, 2003.
[22] RASAMIMANANA N., FLÉTY E., BEVILACQUA F., Gesture Analysis of Violin Bow Strokes, GW 2005, Lecture Notes in Artificial Intelligence Vol. 3881, ss. la dir. de S. Gibet, N. Courty, and J.-F. Kamp, Springer Verlag, 2006.
[23] RODET X., Time-domain formant-wave-function synthesis. Computer Music Journal, Vol. 8, N°3, MIT Press, 1984.
[24] RODET X., Sinusoidal + Residual Models for Musical Sound Signals Analysis/Synthesis. Applied Signal Processing, Vol. 4, N°3, 1998.
[25] RODET X., ESCRIBE J., DURIGON S., Improving score to audio alignment: Percussion alignment and Precise Onset Estimation, Proc. Int. Computer Music Conf. (ICMC’04), 2004.
[26] RÖBEL A., A new approach to transient processing in the phase vocoder. Proc. Int. Conf. on Digital Audio Effects (DAFx'03), 2003.
[27] RÖBEL A., Adaptive additive modeling with continuous parameter trajectories. IEEE Transactions on Audio, Speech and Signal Processing (à paraître).
[28] SCHNELL N., SCHWARZ D., Gabor, Multi-Representation RealTime Analysis/Synthesis. Proc. Int. Conf. on Digital Audio Effects (DAFx'05), 2005.
[29] SCHNELL N., BORGHESI R., SCHWARZ D., BEVILACQUA F., MÜLLER R., FTM-Complex Data Structures for Max, Proc. Int. Computer Music Conf. (ICMC’05), 2005.
[30] SCHWARZ D., Data-Driven Concatenative Sound Synthesis. Thèse de doctorat, Université Paris 6, 2004.
[31] SCHWARZ D., Current Research in Concatenative Sound Synthesis, Proc. Int. Computer Music Conf. (ICMC’05), 2005.
[32] SCHWARZ D., WRIGHT M., Extensions and Applications of the SDIF Sound Description Interchange Format. Proc. Int. Computer Music Conf. (ICMC’00), 2000.
[33] SIMON I., BASU S., SALESIN D, AGRAWALA M., Audio Analogies : Creating New Music from an Existing Performance by Concatenative Synthesis, Proc. Int. Computer Music Conf. (ICMC’05), 2005.
[34] SMITH J., Physical Modeling using Digital Waveguides, Computer Music Journal, Vol. 16, N°4, MIT Press, 1992.
[35] VAN DUYNE S.A., SMITH J.O., Physical modeling with the 2-D digital waveguide mesh, Proc. Int. Computer Music Conf. (ICMC’93), 1993.
[36] VINCENT E., Modèles d'instruments pour la séparation de sources et la transcription d'enregistrements musicaux. Thèse de doctorat, Université Paris 6, 2004.
[37] VINET H., The Representation Levels of Music Information. Lecture Notes in Computer Science, Vol. 2771, Springer Verlag, 2003.
[38] VINET H., HERRERA P., PACHET F., The CUIDADO Project. Proc. Int. Conf. on Music Information Retrieval (ISMIR’02), Ircam, Paris, 2002.
[39] VINET H., The SemanticHIFI Project : Content-based Manipulation of Digital Audio Recordings, Proc. European Workshop on the Integration of knowledge, semantic, and digital Media Technology (EWIMT’05), 2005.
[40] WARUSFEL O., MISDARIIS N., Directivity synthesis with 3D array of loudspeakers : application for stage performance., Proc. Int. Conf. on Digital Audio Effects (DAFx’01), 2001.
[41] YEH C., RÖBEL A., RODET X., Multiple Fundamental Frequency Estimation of Polyphonic Music Signals, IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp. 225-228 (Vol. III), 2005.
[42] ZILS A., PACHET F., Automatic Extraction of Music Descriptors from Acoustic Signals using EDS. Proc. 116th AES Convention, 2004.