Quantization and classification
Quantification et classification
OPEN ACCESS
The problem of quantizer design for detection or classification has a long history, with classical contributions by Kassam, Poor, Picinbono, Bucklew and others. The goal was to design a quantizer such that a detection rule based on the quantized information was optimized. During recent years an alternative approach has been developed which seeks to jointly optimize quantization and classification by incorporating the Bayes risk resulting from the quantizer into the quantizer optimization. In this paper the general classical approach of Picinbono and Duvaut is compared contrasted with the joint approach and illustrated by a simple example.
Résumé
Il existe une importante littérature traitant du problème de la conception d'un quantificateur pour un système de détection ou de classification. A l'origine, les travaux menés dans ce domaine - notamment par Kassam, Poor, Picinbono et Bucklew - ont pour but de concevoir un quantificateur qui optimise une règle de décision basée sur l'information quantifiée. Rompant avec cette approche classique, ces dernières années ont vu l'émergence d'une approche alternative dont l'objectif est d'optimiser conjointement les opérations de quantification et de classification. L'optimisation conjointe est réalisée par minimisation d'un critère Lagrangien comprennant l'erreur quadratique moyenne (quantification) et le risque de Bayes (classification). Dans cet article, nous proposons de comparer l'approche conjointe à l'approche classique, plus courante, de Picinbono et Duvaut . Nous illustrons les deux méthodes à l'aide d'un exemple simple.
Quantification, détection, classification, classification optimale par risque de Bayes, estimation de densité
Mots clés
Signal quantization, signal detection, optimal classification, density estimation
[1] S. A. Kassam, "Optimum quantization for signal detection," IEEE Trans. Comm., vol . COM-25, p. 479–484, May 1977.
[2] H . V. Poor and J . B . Thomas, Applications of Ali-Silvey distance measures in the design of generalized quantizers for binary decision systems," IEEE Trans . Comm., vol . COM-25, p . 893–900, September 1977.
[3] H . V. Poor and J. B . Thomas, "Optimal quantization for local decision based on independent samples," J. Franklin Inst., vol . 303, p . 549–561, 1977 .
[4] H. V. Poor and D . Alexandrou, "A general relationship between two quantizer design criteria," IEEE Trans. Inform. Theory, Vol . IT-26, p . 210–212, 1980 .
[5] D . Alexandrou and H . V. Poor, "The analysis and design of data quantization schemes for stochastic signal detection systems," IEEE Trans . Comm. , vol . COM-28, p . 983–981, September 1980 .
[6] J . A . Bucklew, "Multidimensional digitization of data followed by a mapping, " IEEE Trans. Inform. Theory, vol. 30, p . 107–111, January 1984 .
[7] B. Aazhang and H . V. Poor, "An optimum and nearly optimum data quantization for signal detection," IEEE Trans. Comm., vol . COM-32, p . 745 – 751, September 1984 .
[8] B . Picinbono and P. Duvaut, "Quantification et détection," Ann . Télécommun. , vol . 41, p . 1246–251, 1986 .
[9] B . Picinbono and P. Duvaut, "Optimum quantization for detection," IEEE Trans . Comm ., vol . 36, p . 1254–1258, November 1988 .
[10] G. R. Benitz and J . A . Bucklew, `Asymptotically optimal quantizers for detection of i .i.d. data," IEEE Trans. Inform. Theory, vol. IT-35, p . 316–325 , 1989 .
[11] L. Breiman, J . H . Friedman, R . A . Olshen, and C . J . Stone, Classification and Regression Trees, Belmont, CA : Wadsworth, 1984 .
[12] T. M . Cover and P. E. Hart, "Nearest neighbor pattern classification," IEEE Trans. Inform. Theory, vol . IT-13, p . 21–27, 1967 .
[13] C. J. Stone, "Consistent nonparametric regression," Annals of Statistics, vol . 5, p . 595–645, 1977 .