Désentrelacement De Clics Par Analyse Du Rythme

Désentrelacement De Clics Par Analyse Du Rythme

Olivier Le Bot Cédric Gervaise  Julien Bonnel  Jérôme I. Mars 

Pôle STIC/ équipe Acoustique Passive, ENSTA Bretagne (UEB) 2, rue François Verny, F-29806 Brest cedex 9

Chaire CHORUS, Fondation Grenoble INP 46 Avenue Félix Viallet, F-38031 Grenoble cedex 1

Gipsa-lab, CNRS, Grenoble INP 11 rue des Mathématiques, F-38402 Saint-Martin-d’Hères

LabSTICC/TOMS, CNRS (UMR 6285), ENSTA Bretagne (UEB) 2, rue François Verny, F-29806 Brest cedex 9

Corresponding Author Email: 
olivier.le_bot@ensta-bretagne.fr
Page: 
195-218
|
DOI: 
https://doi.org/10.3166/TS.30.195-218
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

All odontocetes produce short acoustic pulses called clicks to perform localization, hunt preys or communicate. These clicks are generally emitted in trains having a certain rhythm. Frequently, click trains from several animals are recorded simultaneously. This paper introduces a method for deinterleaving these click trains with a single hydrophone. As final results it gives the number of animals clicking simultaneously and allows the tracking of rhythm variations within each train. The proposed algorithm is successfully tested on simulated data and validated on real data.

RÉSUMÉ

Tous les odontocètes émettent de courtes impulsions acoustiques (clics) pour satisfaire une activité de localisation, de chasse ou de communication. Ces impulsions sont le plus souvent émises en trains rythmés. Il est très fréquent d’enregistrer simultanément les clics de plusieurs animaux. Cet article présente une méthode permettant de séparer les trains de clics enregistrés sur un unique hydrophone afin de connaître le nombre d’animaux ayant émis simultanément. La méthode proposée est testée avec succès sur des données simulées et sur des données réelles.

Keywords: 

click train, deinterleaving, time-period analysis, rhythm, inter-click interval

MOTS-CLÉS

trains de clics sonar, désentrelacement, analyse de rythme, intervalle inter-clic

1. Introduction
2. Méthodolog
3. Application Sur Données Simulées
4. Application Sur Données Réelles
5. Conclusion
  References

Andre M., Kamminga C. (2000). Rhythmic dimension in the echolocation click trains of sperm whales: A possible function of identification and communication. J. Marine Biological Association of the UK, vol. 80, no 01, p. 163–169.

Au W. (1993). The sonar of dolphins. Springer, New York.

Au W., Hastings M. (2008). Principles of marine bioacoustics (M. Acoustics, S. Processing, Eds.). Springer.

Baggenstoss P. (2011). Separation of sperm whale click-trains for multipath rejection. J. Acoust. Soc. Am., vol. 129, p. 3598.

Caudal F., Glotin H. (2008a). High level automatic structuration of ocean passive data: From click sequence modulations to whale behavior analyses. In New trends for environmental monitoring using passive systems, p. 1–7.

Caudal F., Glotin H. (2008b). Multiple real-time 3d tracking of simultaneous clicking whales using hydrophone array and linear sound speed profile. In Icassp’08, p. 2441–2444.

Gervaise C., Barazzutti A., Busson S., Simard Y., Roy N. (2010). Automatic detection of bioacoustics impulses based on kurtosis under weak signal to noise ratio. Appl. Acoust., vol. 71, p. 1020-1026.

Giraudet P., Glotin H. (2006). Real-time 3d tracking of whales by echo-robust precise tdoa estimates with a widely-spaced hydrophone array. Appl. Acoust., vol. 67, no 11-12, p. 1106–1117.

Hildebrand J. (2004). Impacts of anthropogenic sound on cetaceans. Rapport technique. International Whaling Commission Scientific Commitee SC/56/E.

Hirotsu R., Yanagisawa M., Ura T., Sakata M., et al. (2010). Localization of sperm whales in a group using clicks received at two separated short baseline arrays. J. Acoust. Soc. Am., vol. 127, p. 133.

Kandia V., Stylianou Y. (2006). Detection of sperm whale clicks based on the teager–kaiser energy operator. Appl. Acoust., vol. 67, no 11, p. 1144–1163.

Laplanche C., Adam O., Lopatka M., Motsch J.-F. (2005). Male sperm whale acoustic behavior observed from multipaths at a single hydrophone. J. Acoust. Soc. Am., vol. 118, p. 2677.

Mahdavi A., Pezeshk A. (2011). A fast enhanced algorithm of pri transform. In Parelec’11, p. 179–184.

Mardia H. (1989). New techniques for the deinterleaving of repetitive sequences. In Iee proc. of radar and signal processing, vol. 136, p. 149–154.

Mellinger D., Stafford K. (2007). An overview of fixed passive acoustic observation methods for cetaceans. Oceanography, vol. 20, no 4, p. 36.

Milojevic D., Popovic B. (1992). Improved algorithm for the deinterleaving of radar pulses. In Iee proc. of radar and signal processing, vol. 139, p. 98–104.

Morrissey R., Ward J., DiMarzio N., Jarvis S., Moretti D. (2006). Passive acoustic detection and localization of sperm whales (physeter macrocephalus) in the tongue of the ocean. Appl. Acoust., vol. 67, no 11, p. 1091–1105.

Nelson D. (1993). Special purpose correlation functions for improved signal detection and parameter estimation. In Icassp’93, vol. 4, p. 73–76.

Nishiguchi K. (1983). A new method for estimation of pulse repetition intervals. In National convention record of iece of japan.

Nishiguchi K. (2005). Time-period analysis for pulse train deinterleaving. Trans. Computers of the Society of Instrument and Control Engineers, vol. E-4, p. 68–78.

Nishiguchi K., Kobayashi M. (2000). Improved algorithm for estimating pulse repetition intervals. IEEE Trans Aerospace and Electronic Systems, vol. 36, no 2, p. 407–421.

Nosal E., Frazer L. (2007). Sperm whale three-dimensional track, swim orientation, beam pattern, and click levels observed on bottom-mounted hydrophones. J. Acoust. Soc. Am., vol. 122, p. 1969.

Papoulis A., Pillai S. (1991). Probability, random variable and stochastic processes (vol. 3). McGraw-Hill, New York.

Perrin W., Würsig B., Thewissen J. (2008). Encyclopedia of marine mammals (A. press, Ed.). Academic Press.

Roy N., Simard Y., Gervaise C. (2010). 3d tracking of foraging belugas from their clicks: Experiment from a coastal hydrophone array. Appl. Acoust., vol. 71, no 11, p. 1050–1056.

Schaar M. van der. (2009). An acoustic bio-metric for sperm whales. Thèse de doctorat non publiée, Universitat polytecnica de catalunya.

Simard P., Hibbard A., McCallister K., Frankel A., et al. (2010). Depth dependent variation of the echolocation pulse rate of bottlenose dolphins (tursiops truncatus). J. Acoust. Soc. Am., vol. 127, no 1, p. 568–578.

Ward J., Morrissey R., Moretti D., DiMarzio N., et al. (2008). Passive acoustic detection and localization of mesoplodon densirostris (blainville’s beaked whale) vocalization using distributed bottom-mounted hydrophones in conjunction with a digital tag (dtag) recording. Rapport technique. DTIC Document.

Weilgart L. S. W. L. S. (2007). The impacts of anthropogenic ocean noise on cetaceans and implication for management. Canadian Journal of Zoology, vol. 85, p. 1091-1116.

Wiley R. (1993). Electronic intelligence: The analysis of radar signals. Artech House, Boston.