MUSKCA: Ontology merging system based on consensus and trust evaluation

MUSKCA: Ontology merging system based on consensus and trust evaluation

Fabien Amarger Catherine Roussey Ollivier Haemmerlé Nathalie Hernandez Romain Guillaume  

IRIT, UMR 5505 Université de Toulouse, UT2J 5 allées Antonio Machado F-31058 Toulouse Cedex, France

UR TSCF, Irstea, 9 av. Blaise Pascal CS 20085, 63172 Aubière, France

Corresponding Author Email:;
30 June 2018
| Citation



Today many datasets related to the same domain of interest are available on the web of Linked Data. These datasets can have variable quality, which makes them difficult to reuse. In this article, we present a novel approach for identifying knowledge shared by different datasets taking into account their quality. This approach is based on metrics used to evaluate the trust score of common elements extracted from various datasets. In this article we propose several metrics, one of them is based on the integral of Choquet. These metrics have been evaluated on a real case study from the agriculture domain.  


ontology development, trust, non-ontological sources, ontology design pattern, ontology merging

1. Introduction
2. État de l’art sur la fusion de bases de connaissances
3. Processus général
4. Processus de fusion de bases de connaissances
5. Calcul de la confiance d’un candidat
6. Évaluation
7. Conclusion et perspectives

Amarger F. (2015). Vers un système intelligent de capitalisation de connaissances pour l’agriculture durable : construction d’ontologies agricoles par transformation de sources existantes. Thèse de doctorat non publiée, Université de Toulouse 2 le Mirail. 

Amarger F., Chanet J., Haemmerlé O., Hernandez N., Roussey C. (2014). SKOS Sources Transformations for Ontology Engineering: Agronomical Taxonomy Use Case. In Metadata and Semantics Research: 8th Research Conference, MTSR 2014, p. 314–328. Karlsruhe, Germany, Springer. 

Amarger F., Chanet J., Haemmerlé O., Hernandez N., Roussey C. (2015). Construction d’une ontologie par transformation de systèmes d’organisation des connaissances et évaluation de la confiance. Ingénierie des Systèmes d’Information, vol. 20, no 3, p. 37–61. 

Amarger F., Chanet J.-P., Guillaume R., Haemmerlé O., Hernandez N., Roussey C. (2016). Détection de consensus entre sources et calcul de confiance fondé sur l’intégrale de choquet. In 27es journées francophones d’Ingénierie des Connaissances. Montpellier, France, HAL. 

Caracciolo C., Stellato A., Morshed A., Johannsen G., Rajbhandari S., Jaques Y. et al. (2013). The AGROVOC Linked Dataset. Semantic Web, no 3, p. 341–348. 

Dong X., Gabrilovich E., Heitz G., HornW., Lao N., Murphy K. et al. (2014). Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In Proceedings of the 20th acm sigkdd international conference on Knowledge Discovery and Data Mining, p. 601–610. New York, USA. 

Dong X. L., Gabrilovich E., Heitz G., Horn W., Murphy K., Sun S. et al. (2014). From data fusion to knowledge fusion. Proceedings of the VLDB Endowment, vol. 7, no 10, p. 881– 892. 

Dragisic Z., Eckert K., Euzenat J., Faria D., Ferrara A., Granada R. et al. (2014). Results of the Ontology Alignment Evaluation Initiative 2014. In 9th ISWC workshop on ontology matching (OM), p. 61–104. Riva del Garda, Italy, HAL. 

Federhen S. (2012, janvier). The NCBI Taxonomy database. Nucleic Acids Research, vol. 40, no D1, p. D136–D143. 

Fleiss J. L., Cohen J. (1973). The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educational and Psychological Measurement. 

Gangemi A., Presutti V. (2009). Ontology design patterns. In Handbook on ontologies, p. 221–243. Springer. 

Gargominy O., Tercerie S., Régnier C., Ramage T., Schoelinck C., Dupont P. et al. (2016). TAXREF v10. 0, référentiel taxonomique pour la France: Méthodologie, mise en oeuvre et diffusion. Rapport technique. Paris, Muséum National d’Histoire Naturelle. 

Grabisch M., Roubens M. (2000). Application of the choquet integral in multicriteria decision making. Fuzzy Measures and Integrals-Theory and Applications, p. 348–374. 

Guzmàn-Arenas A., Cuevas A.-D. (2010). Knowledge accumulation through automatic merging of ontologies. Expert Systems with Applications, vol. 37, no 3, p. 1991–2005. 

Jiménez-Ruiz E., Grau B. C. (2011). Logmap: Logic-based and scalable ontology matching. In 10th International Semantic Web Conference, proceedings, part i, vol. 7031, p. 273–288. Bonn, Germany, Springer. 

Lin J., Mendelzon A. O. (1999). Knowledge base merging by majority. In Dynamic worlds, p. 195–218. Springer. 

Pottinger R. A., Bernstein P. A. (2003). Merging models based on given correspondences. In 29th international conference on Very Large Data Bases, p. 862–873. Berlin, Germany. 

Raunich S., Rahm E. (2014). Target-driven merging of taxonomies with Atom. Information Systems, vol. 42, p. 1–14. 

Roussey C., Chanet J.-P., Cellier V., Amarger F. (2013). Agronomic taxon. In Proceedings of the 2nd International Workshop on Open Data, p. 5. Paris, France. 

Shvaiko P., Euzenat J. (2013). Ontology matching: State of the art and future challenges. IEEE Transactions on Knowledge and Data Engineering, vol. 25, no 1, p. 158–176. 

Soergel D., Lauser B., Liang A., Fisseha F., Keizer J., Katz S. (2004). Reengineering thesauri for new applications: The AGROVOC example. Journal of Digital Information, vol. 4, no 4. 

Suárez-Figueroa M. C., Gómez-Pérez A., Motta E., Gangemi A. (2012). Ontology engineering in a networked world. Springer Science & Business Media.

Villazon-Terrazas B., Carmen Suarez-Figueroa M., Gomez-Perez A. (2010). A Pattern-Based 

Method for Re-Engineering Non-Ontological Resources into Ontologies. International Journal on Semantic Web and Information Systems, vol. 6, no 4, p. 27–63. 

Zaveri A., Rula A., Maurino A., Pietrobon R., Lehmann J., Auer S. (2016). Quality assessment for linked data: A survey. Semantic Web, vol. 7, no 1, p. 63–93.