Formalizing the semantics of iconic languages. An ontology-based method and its applications

Formalizing the semantics of iconic languages. An ontology-based method and its applications

Jean-Baptiste Lamy Lina F. Soualmia Catherine Duclos Alain Venot 

LIMICS, Université Paris 13, Sorbonne Paris Cité, 93017 Bobigny, France, INSERM UMRS 1142, UPMC Université Paris 6, Sorbonne Universités, Paris, France

Normandie Université, LITIS EA 4108, NormaSTIC CNRS FRE 3638, Université de Rouen, France

Corresponding Author Email: 
jean-baptiste.lamy@univ-paris13.fr,catherine.duclos@avc.ap-hop-paris.fr,alain .venot@univ-paris13.fr, lina.soualmia@chu-rouen.fr
Page: 
579-606
|
DOI: 
https://doi.org/10.3166/RIA.30.579-606
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

Iconic languages can represent concepts by the combination of graphical primitives (such as colors or pictograms). There are numerous examples, from traffic signs to computer user interface icons. However, these languages do not associate semantics to their icons, which raises various problems: inconsistent combinations of graphical primitives, different interpretations of a given icon by two persons, difficulties to map the icons with the concepts of existing termino-ontological resources... In this article, we propose a method for formalizing the semantics of an iconic language with an ontology. This method was initially developed for the VCM iconic language (Visualization of Concepts in Medicine), which enables to represent the main medical concepts (antecedents, disorders, treatments...) by icons. We show that this method is generalizable to other iconic languages by applying it to traffic signs. Four applications are described : The verification of icons consistency, the semi-Automatic alignment with a medical terminology, the generation of a pictogram lexicon and the generation of icon labels. 

Keywords: 

icons, iconic language, semantics, ontologies, alignment, medicine.

1. Introduction
2. État de l’art sur la formalisation des langages graphiques
3. Méthode de formalisation de la sémantique d’un langage iconique
4. Application à la signalisation routière
5. Application au langage VCM
6. Discussion
7. Conclusion
Remerciements

Ce travail a été en partie financé par l’ANR (Agence Nationale de la Recherche) au travers des projets de recherche L3IM (ANR-08-TECS-007) et SiFaDo (ANR-11-TECS-0014).

  References

Cornet R. (2009). Definitions and qualifiers in SNOMED CT. Methods Inf Med, vol. 48, no 2, p. 178-183.

Costagliola G., De Lucia A., Orefice S., Tortora G. (1997). A parsing methodology for the implementation of visual systems. In Ieee transactions on software engineering, vol. 23, p. 777-799.

Costagliola G., De Rosa M., Fuccella V. (2015). Extending local context-based specifications of visual languages. Journal of Visual Languages and Computing, vol. 31, p. 184-195.

Dreyfuss H. (1984). Symbol sourcebook: An Authoritative Guide to International Graphic Symbols. John Wiley and sons.

Ellner S., Taha W. (2007). The Semantics of Graphical Languages. In Proceedings of the acm sigplan symposium on partial evaluation and semantics-based program manipulation.

Ely J. W., Osheroff J. A., Ebell M. H., Chambliss M. L., Vinson D. C., Stevermer J. J. et al. (2002). Obstacles to answering doctors’ questions about patient care with evidence: qualitative study. BMJ, vol. 324, no 7339, p. 710.

Erwig M. (1997). Semantics of Visual Languages (vol. 300-307).

Griffon N., Kerdelhué G., Soualmia L. F., Merabti T., Grosjean J., Lamy J. B. et al. (2014). Evaluating alignment quality between iconic language and reference terminologies using similarity metrics. BMC medical informatics and decision making, vol. 14, p. 17.

Haarslev V. (1998). Visual Language Theory. In, vol. 261-292, chap. A fully formalized theory for describing visual notations. New York, Springer.

Hirst G. (2009). Handbook on ontologies. In, chap. Ontology and the Lexicon. Springer. 

Horrocks I., Sattler U. (2003). Decidability of SHIQ with complex role inclusion axioms. Artificial Intelligence, vol. 160, p. 2004.

Kashyap V., Borgida A. (2003). Representing the UMLS Semantic Network in OWL. In Proceedings of iswc 2003 (international semantic web conference), vol. 1-16.

Konstantopoulos S., Karkaletsis V., Vogiatzis D., Bilidas D. (2011). Language Technology for Cultural Heritage. In, vol. 115-132, chap. Authoring semantic and linguistic knowledge for the dynamic generation of personalized descriptions. Springer Berlin Heidelberg.

Lamy J. B., Duclos C., Bar-Hen A., Ouvrard P., Venot A. (2008). An iconic language for the graphical representation of medical concepts. BMC Medical Informatics and Decision Making, vol. 8, p. 16.

Lamy J. B., Duclos C., Venot A. (2009). De l’analyse d’un corpus de texte à la conception d’une interface graphique facilitant l’accès aux connaissances sur le médicament. In Actes des 20es journées francophones d’ingénierie des connaissances, vol. 265-276. Hammamet, Tunisie, PUG.

Lamy J. B., Soualmia L. F., Kerdelhué G., Venot A., Duclos C. (2013). Validating the semantics of a medical iconic language using ontological reasoning. J Biomed Inform, vol. 46, no 1, p. 56-67.

Lamy J. B., Tsopra R., Venot A., Duclos C. (2013). A Semi-automatic Semantic Method for Mapping SNOMED CT Concepts to VCM Icons. Stud Health Technol Inform, vol. 192, p. 42-6.

Lamy J. B., Venot A., Bar-Hen A., Ouvrard P., Duclos C. (2008). Design of a graphical and interactive interface for facilitating access to drug contraindications, cautions for use, interactions and adverse effects. BMC Medical Informatics and Decision Making, vol. 8, p. 21.

Lamy J. B., Venot A., Duclos C. (2015). PyMedTermino: an open-source generic API for advanced terminology services. Stud Health Technol Inform, vol. 210, p. 924-928.

Lamy JB. (2016). Ontology-Oriented Programming for Biomedical Informatics. Stud Health Technol Inform, vol. 221, p. 64-68.

Ma X., Matta N., Cahier J. P., Qin C., Cheng Y. (2015). From action icon to knowledge icon: Objective-oriented icon taxonomy in computer science. Displays, vol. 39, p. 68-79.

Marriott K. (1994). Constraint multiset grammars. In Proceedings of ieee symposium on visual languages.

Meunier JG. (1988). La structure générique des systèmes sémiotiques. Recherche sémiotique / Semiotic inquiries (RSSI), no 8.

Meunier JG. (1998). The categorial structure of iconic languages. Theory&Psychology, vol. 8, no 6, p. 805-825.

Motik B., Shearer R., Horrocks I. (2009). Hypertableau reasoning for description logics. Journal of Artificial Intelligence Research, vol. 36, p. 165-228.

Nakamura C., Zeng-Treitler Q. (2012). A taxonomy of representation strategies in iconic communication. Int. J. Human-Computer Studies, vol. 70, no 2012, p. 535-551.

Pereira S., Hassler S., Hamek S., Boog C., Leroy N., Beuscart-Zéphir M. C. et al. (2014). Improving access to clinical practice guidelines with an interactive graphical interface using an iconic language. BMC medical informatics and decision making, vol. 14, no 1, p. 77.

Pisanelli D. M., Gangemi A., Battaglia M., Catenacci C. (2004). Coping with medical polysemy in the semantic web: the role of ontologies. Stud Health Technol Inform, vol. 107, p. 416-419.

Rosse C., Mejino JL V. (2003). A reference ontology for biomedical informatics: the Foundational Model of Anatomy. J Biomed Inform, vol. 36, p. 478-500.

Simon C., Hassler S., Beuscart-Zephir M. C., Favre M., Venot A., Duclos C. et al. (2014). Using an iconic language to improve access to electronic medical records in general medicine. Stud Health Technol Inform, vol. 205, p. 333-7.