Modélisation du procédé de thermoestampage de composites préimprégnés à matrice thermoplastique

Modélisation du procédé de thermoestampage de composites préimprégnés à matrice thermoplastique

Eduardo Guzman-Maldonado Hu Xiong Nahiene Hamila Philippe Boisse 

Université de Lyon, LaMCoS UMR 5259 27 Av. Jean Capelle 69621 Villeurbanne, France

Corresponding Author Email: 
eduardo.guzman-maldonado@insa-lyon.fr; hu.xiong@insa-lyon.fr; nahiene.hamila@insa-lyon.fr; philippe.boisse@insa-lyon.fr
Page: 
9-33
|
DOI: 
https://doi.org/10.3166/RCMA.28.9-33
| | | | Citation

ACCESS

Abstract: 

Pre-impregnated thermoplastic composites are widely used in the aerospace industry for their excellent mechanical properties, impact resistance and fatigue strength all at lower density than other common materials. In recent years, the automotive industry has shown increasing interest in the manufacturing processes of thermoplastic-matrix composites materials, especially in thermoforming techniques for their rapid cycle times and the possible use of preexisting equipment.

An important step in the prediction of the mechanical properties and technical feasibility of parts with complex geometry is the use of modelling and numerical simulations of these forming processes which can also be capitalized to optimize manufacturing practices.

This paper aims to present an approach to the simulation of thermoplastic prepreg composites forming. The proposed model is based on convolution integrals defined under the principles of irreversible thermodynamics and within a hyperelastic framework. The hyperelastic potential is built from the contribution of four major deformation modes that assumed independent: the elongation in the warp and weft directions, the in-plane shear, and the bending deformations. Consequently the corresponding strain energy potentials which are uncoupled can be identified by classical tests on textile composite shells, such as tension, in plane-shear and bending tests. The viscoelasticity is introduced exclusively for the in-plane shear mode. The simulation is composed of thermal analyses and forming simulations performed alternatively. This ensures a coupling between the mechanical and thermal simulations. The deformation of a unit cell and the modification of contacts with the tools change the local thermal properties and temperatures. The thermal conductivities are determined by mesoscopic analysis.The woven reinforced prepreg has a periodicity that can be exploited to perform a homogenization simulation and get the macroscopic conductivity from the geometry of the mesostructure and from the thermal properties of the yarns and the polymer.

Keywords: 

prepreg, thermoplastic, thermomechanical, viscoelasticity, finite element analysis, forming

1. Introduction
2. Le procédé de thermostampage
3. Modèle visco-hyperélastique pour la mise en forme de préimprégnés
4. Simulation numérique
5. Conclusions
Remerciements

Ce travail a été effectué dans le cadre du projet Composite Cab. Ce projet collaboratif a réuni 8 partenaires industriels de la région Rhône-Alpes : Solvay, Saertex, Reanult Trucks, Plastic Omnium, Mecacorp, Segula, Addiplast, Altair ; et deux universités: l’Université de Bourgogne et l’Institut National de Sciences Appliquées de Lyon.

  References

Aimene Y., Hagege B., Sidoroff F., Vidal-Sallé E., Boisse P., Dridi S. (2008). Hyperelastic Approach for Composite Reinforcement Forming Simulations. International Journal of

Material Forming, vol. 1, no S1, p. 811–814.

Bilbao E. d., Soulat D., Hivet G., Gasser A. (2010). Experimental study of bending behaviour of reinforcements. Experimental Mechanics, vol. 50, p. 333–351.

Boisse P., Hamila N., Guzman-Maldonado E., Madeo A., Hivet G., dell’Isola F. (2016). The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements

and prepregs: a review. International Journal of Material Forming, p. 1–20.

Boubaker B. B., Haussy B., Ganghoffer J. F. (2007). Discrete models of woven structures. Macroscopic approach. Composites Part B: Engineering, vol. 38, no 4, p. 498–505.

Brøndsted P., Lilholt H., Lystrup A. (2005). Composite materials for wind power turbine blades. Annu. Rev. Mater. Res., vol. 35, p. 505–538.

Campbell F. C. (2010). Structural Composite Materials. ASM International.

Charmetant a., Orliac J. G., Vidal-Sallé E., Boisse P. (2012). Hyperelastic model for large deformation analyses of 3d interlock composite preforms. Composites Science and Technology, vol. 72, no 12, p. 1352–1360.

Cherouat a., Billoët J. L. (2001). Mechanical and numerical modelling of composite manufacturing processes deep-drawing and laying-up of thin pre-impregnated woven fabrics. Journal of Materials Processing Technology, vol. 118, no 1-3, p. 460–471.

Criscione J. C., Douglas A. S., Hunter W. C. (2001). Physically based strain invariant set for materials exhibiting transversely isotropic behavior. Journal of the Mechanics and Physics of Solids, vol. 49, p. 871–897.

Dangora L. M., Hansen C. J., Mitchell C. J., Sherwood J. A., Parker J. C. (2015). Challenges associated with shear characterization of a cross-ply thermoplastic lamina using picture frame tests. Composites Part A: Applied Science and Manufacturing, vol. 78, p. 181–190.

Dumont F. (2003). Contribution à l’expérimentation et à la modélisation du comportement mécanique de renforts de composites tissés. Thèse de doctorat non publiée, Université Paris

6.

Easterling E. (2012). Advanced materials for sports equipment: how advanced materials help optimize sporting performance and make sport safer. Springer Science & Business Media.

Fuchs E. R. H., Field F. R., Roth R., Kirchain R. E. (2008). Strategic materials selection in the automobile body: Economic opportunities for polymer composite design. Composites Science and Technology, vol. 68, no 9, p. 1989 – 2002.

Geers M. G. D., Kouznetsova V. G., Brekelmans W. A. M. (2003). Multi-scale modelling : Computational homogenization in solid mechanics. Composites Science and Technology, vol. 1, no 4, p. 1235–1260.

Guzman-Maldonado E., Hamila N., Boisse P., Bikard J. (2015). Thermomechanical analysis, modelling and simulation of the forming of pre-impregnated thermoplastics composites. Composites Part A: Applied Science and Manufacturing, vol. 78, p. 211–222.

Guzman-Maldonado E., Hamila N., Naouar N., Moulin G., Boisse P. (2016). Simulation of thermoplastic prepreg thermoforming based on a visco-hyperelastic model and a thermal homogenization. Materials & Design, vol. 93, p. 431–442.

Hamila N., Boisse P., Sabourin F., Brunet M. (2009). A semi-discrete shell finite element for textile composite reinforcement forming simulation. Int. J. Numer. Methods Eng., vol. 79, p. 1443–1466.

Harrison P., Clifford M. J., Long A. C. (2004). Shear characterisation of viscous woven textile composites: a comparison between picture frame and bias extension experiments. Composites Science and Technology, vol. 64, p. 1453–1465.

Harrison P., Clifford M. J., Long a. C., Rudd C. D. (2004). A constituent-based predictive approach to modelling the rheology of viscous textile composites. Composites Part A: Applied Science and Manufacturing, vol. 35, no 7-8, p. 915–931.

Hasselman D., Donaldson K., Thomas J. (1993). Effective Thermal Conductivity of Uniaxial Composite with Cylindrically Orthotropic Carbon Fibers and Interfacial Thermal Barrier. Journal of Composite Materials, vol. 27, no 6, p. 637–644.

Hsiao S.-W., Kikuchi N. (1999). Numerical analysis and optimal design of composite thermoforming process. Computer Methods in Applied Mechanics and Engineering, vol. 177, p. 1–34.

Itskov M., Aksel N. (2004). A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. International Journal of Solids and Structures, vol. 41, p. 3833–3848.

Jauffrès D., Morris C. D., Sherwood J. a., Chen J. (2009). Simulation of the thermostamping of woven composites: Mesoscopic modelling using explicit FEA codes. International Journal of Material Forming, vol. 2, no SUPPL. 1, p. 173–176.

Kutz M. (2002). Handbook of materials selection. John Wiley & Sons. Lebrun G., Bureau M. N., Denault J. (2003). Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics. Composite Structures, vol. 61, no 4, p. 341–352.

Liang B., Hamila N., Peillon M., Boisse P. (2014). Analysis of thermoplastic prepreg bending stiffness during manufacturing and of its influence on wrinkling simulations. Composites Part A, vol. 67, p. 111–122.

Mark J. E. (2007). Physical Properties of Polymers Handbook. Springer.

Naouar N., Vidal-Salle E., Schneider J., Maire E., Boisse P. (2014). Meso-scale FE analyses of textile composite reinforcement deformation based on X-Ray computed tomography. Composite Structures, vol. 116, no 0, p. 165 – 176.

Ozdemir I., Brekelmans W. A. M., Geers M. G. D. (2008). Computational homogenization for heat conduction in heterogeneous solids. International Journal for Numerical Methods in Engineering, vol. 73, no 2, p. 185–204.

Ramakrishna S., Mayer J., Wintermantel E., Leong K. W. (2001). Biomedical applications of polymer-composite materials: a review. Composites science and technology, vol. 61, no 9, p. 1189–1224.

Rogers T. G. (1989). Rheological characterization of anisotropic materials. Composites, vol. 20, no 1, p. 21 – 27.

Sabourin F., Brunet M. (2006). Detailed formulation of the rotation-free triangular element S3 for general purpose shell analysis. Engineering Computations, vol. 23, p. 469–502.

Schnur D. S., Zabaras N. (1992). An inverse method for determining elastic material properties and a material interface. International Journal for Numerical Methods in Engineering, vol. 33, no 10, p. 2039–2057.

Sherburn M. (2007). Geometric and mechanical modelling of textiles. Thèse de doctorat non publiée, Université de Nottingham.

Simo J. C. (1987). On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Computer Methods in Applied Mechanics and Engineering, vol. 60, no 2, p. 153 – 173.

Spencer A. J.M. (1972). Deformations of Fibre Reinforced Materials. Oxford University Press, London.

Spencer A. J. M. (1984). Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer Vienna.

Spencer A. J. M., Soldatos K. P. (2007). Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness. International Journal of Non-Linear Mechanics, vol. 42, p. 355–368.

Sze K. Y., Liu X. H. (2005). A new skeletal model for fabric drapes. International Journal of Mechanics and Materials in Design, vol. 2, no 3-4, p. 225–243.

Thije R. H. W. ten, Akkerman R., Huétink J. (2007). Large deformation simulation of anisotropic material using an updated Lagrangian finite element method. Computer Methods in Applied Mechanics and Engineering, vol. 196, no 33-34, p. 3141–3150.

Thomas S., Joseph K., Malhotra S., Goda K., Sreekala M. (2012). Polymer Composites, Macroand Microcomposites. Wiley-VCH: Weinheim, Germany.

Van Der Weeën F. (1991). Algorithms for draping fabrics on doubly-curved surfaces. International journal for numerical methods in engineering, vol. 31, no 7, p. 1415–1426.

Verrey J., Wakeman M., Michaud V., M\a anson J.-A. (2006). Manufacturing cost comparison of thermoplastic and thermoset RTM for an automotive floor pan. Composites Part A: Applied Science and Manufacturing, vol. 37, no 1, p. 9–22.

Wang P., Hamila N., Pineau P., Boisse P. (2012). Thermomechanical analysis of thermoplastic composite prepregs using bias-extension test. Journal of Thermoplastic Composite Materials, vol. 27, no 5, p. 679–698.