Development of ultra fine grained structure (UFG) on AA6061 and reinforced with CuO composite through equal channel angular pressing (ECAP) process

Development of ultra fine grained structure (UFG) on AA6061 and reinforced with CuO composite through equal channel angular pressing (ECAP) process

S. Senthil MuruganK. Maheswarn 

Department of Mechanical Engineering, Mepco Schlenk Engineering College (Autonomous), Sivakasi- 626005, India

Department of Mechanical Engineering, Mepco Schlenk Engineering College (Autonomous), Sivakasi- 626005, India

Corresponding Author Email: 
gctsegan@gmail.com
Page: 
481-494
|
DOI: 
https://doi.org/10.3166/RCMA.28.481-494
| | | | Citation

ACCESS

Abstract: 

The purpose of this investigation is to fabricate the aluminium matrix composite and develop Ultra Fine Grained Structure. Aluminum matrix composites are widely used in the aerospace application for their outstanding properties. Equal Channel Angular Pressing (ECAP) is a process for obtaining ultrafine grained materials (UFG) without any change in their cross section. The composite produced billets are pressed in the L- shaped (90° angle) die with 25 ton high pressure to fabricate ultra-fine grained structure. In order to avoid cracking of the ECAP samples through ECAP process, it is necessary to do the solution heat treatment at 530°C for 4hr before pressing after that the samples are quenched at room temperature water then immediately pressed. The ultra-fine structured grains formed are of granular type containing high angle grain boundaries. In this work, AA6061 was used as matrix and cupric oxide was used as reinforcement to prepare composite with stir casting process. Grain size reduction is observed in the microstructure the grain size is measured with image analyzer. ECA pressed age hardened samples have shown remarkable increase in hardness also.

Keywords: 

UFG, ECAP, stir casting, severe plastic deformation, solution heat treatment, microstructure

1. Introduction
2. Materials and methods
3. Results and discussion
4. Conclusions
  References

Angella G., Bassani P. (2006). Microstructure evolution and kinetics of Al-Mg-Si and Al-Mg-Si-Sc alloys processed by ECAP. Materials Science Forum, Vol. 503-504. pp. 493-498. https://doi.org/10.4028/www.scientific.net/MSF.503-504.493. 

Athreya C. N., Mahesh V. P., Brahmakumar M., Rajan T. P. D. (2012). Equal channel angular pressing of aluminium-alumina in situ metal matrix composite. Materials Science Forum, Vol. 710, pp. 247-252. https://doi.org/10.4028/www.scientific.net/MSF.710.247

Hayari M. A., Antoine P., Biguenet G., Monnet J. (1990). Détermination des caractéristiques mécaniques au cisaillement des argiles litées cas du glissement de la combe d’Harmalière. https://doi.org/10.1051/geotech/1990050071 

Maity P. C., Chakraborty P. N., Panigrahi S. C. (1997). Al-Al2O3 in situ particle composites by reaction of cuo particles in molten pure al. Materials Letters, Vol. 30, No. 2–3, pp. 147-151. https://doi.org/10.1016/S0167-577X(96)00188-7 

Senthil Murugan S. (2017). Equal channel angular pressing: A novel technique for the production of ultra fine grained structure in materials –a mini review, International Journal of Modern Studies in Mechanical Engineering (IJMSME), Vol. 3, No. 1, pp. 6-14, http://dx.doi.org/10.20431/2454-9711.0301002 

Sklenička V., Dvořák J., Svoboda M., Král P., Vlach B. (2005). Effect of processing route on microstructure and mechanical behaviour of ultrafine grained metals processed by severe plastic deformation. Materials Science Forum, Vol. 482, pp. 83-88. https://doi.org/10.4028/www.scientific.net/MSF.482.83 

Vàclav Sklenička J., Dvořák Kvapilova M., Svoboda M., Král P., Saxl I. (2007). Effect of equal-channel angular pressing (ecap) on creep in aluminium alloys. Materials Science Forum, Vol. 539-543, pp. 2904-2909. https://doi.org/10.4028/www.scientific.net/MSF.539-543.2904 

Valiev R. (2008). Recent developments of severe plastic deformation techniques for processing bulk nanostructured materials. materials science forum. Trans Tech Publications, Vol. 579, pp. 1-14. https://doi.org/10.4028/www.scientific.net/MSF.579.1 

Valiev R. Z., Estrin Y., Horita Z., Langdon T. G., Zechetbauer M. J., Zhu Y. T. (2006). Producing bulk ultrafine-grained materials by severe plastic deformation. Journal of Plasticity Engineering, Vol. 58, No. 4, pp. 33-39. https://doi.org/10.1007/s11837-006-0213-7 

Vevecka-Priftaj A., Bohner A. (2008). Strain rate sensitivity of ultrafine grained Aluminium alloy AA6061. Materials Science Forum, Vol. 584-586, pp. 741-747. https://doi.org/10.4028/www.scientific.net/MSF.584-586.741 

Xu C., Langdon T. G. (2007). The development of hardness homogeneity in aluminum and an aluminum alloy processed by ecap. Journal of Materials Science, Vol. 42, No. 5, pp. 1542-1550. https://doi.org/10.1007/s10853-006-0899-5 

Yin S. M., Wang C. H., Diao Y. D., Wu S. D., Li S. X. (2011). Influence of grain size and texture on the yield asymmetry of mg-3al-1zn alloy. Journal of Materials Science & Technology, Vol. 27, No. 1, pp. 29-34. http://dx.doi.org/ 10.1016/S1005-0302(11)60021-2