Experimental analysis & modelling of fatigue behaviour of thick woven laminated composites

Experimental analysis & modelling of fatigue behaviour of thick woven laminated composites

Pongsak NimdumJacques Renard 

Department of Mechanical and Aerospace Engineering DMIE Center, King Mongkut’s University of Technology North Bangkok 1518 Pibulsongkram Rd., Bangsue, Bangkok 10800, Thailand

Centre des Matériaux P.M.Fourt Mines-Paris Tech, CNRS UMR 7633 BP87, F-91003 Evry cedex, France

Corresponding Author Email: 
Pongsak.n@eng.kmutnb.ac.th
Page: 
87-113
|
DOI: 
https://doi.org/10.3166/RCMA.26.87-113
Received: 
N/A
| |
Accepted: 
N/A
| | Citation
Abstract: 

The objective of this work was to analyse the fatigue behaviour and the damage development in unidirectional and angle-ply 2/2 twill weave T800 carbon/epoxy woven fabric composite laminates. Fatigue tensile-tensile tests were performed and internal damage has been observed by using camera and optical microscope during testing. The experimental results show that the damage evolution can be characterized by two or three stages according to the 0° ply and angle-ply laminates respectively. An original fatigue criterion for onset delamination during fatigue loading of angle-ply laminates has been proposed. Validation of fatigue model was made with tensile fatigue tests performed on angle-ply textile laminates with drilled circular hole. Further numerical predictions are in good agreement with experimental results.

Keywords: 

carbon fibre, thick woven composite, fatigue model, damage mechanism, FEM

1. Introduction
2. Experimental procedure
3. Experimental analysis under fatigue loading
4. Experimental procedure
5. Prediction of delamination onset in circular-hole specimens
6. Conclusions
Acknowledgments

We gratefully acknowledge ADEME (Agence de l’Environnement et de la Maîtrise de l’Energie) for support from ARMINES Centre des Matériaux, in the project LICOS and ALSTOM.

  References

Alif N., Carlsson L.A., et Boogh L. (1998). The effect of weave pattern and crack propagation direction on mode I delamination resistance of woven glass and carbon composites, Composites:Part B, vol. 29B, p. 603-611.

Bažant Z.P. et Pijaudier-Cabot G. (1998). Nonlocal continuum damage, localization instability and convergence, Journal of Applied Mechanics, vol. 55, p. 287-293.

Bond I.P. (1999). Fatigue life prediction for GRP subjected to variable amplitude loading, Composites: Part A, vol. 30, p. 961-970.

Brewer J.C. et Lagace P.A. (1988). Quadratic Stress Criterion for Initiation of delamination, Journal of Composite Materials, vol. 22, p. 1141-1155.

Broutman L.J. et Sahu S. (1972). A new theory to predict cumulative fatigue damage in fiber glass reinforced plastics Composite materials: testing and design, (2nd conference). ASTM STP, 497, p. 170-188.

Caron J.-F. (1993). Modélisation de la cinétique de fissuration transverse en fatigue dans les stratifiés, PhD thèse,Ecole Nationale des Ponts et Chaussées.

Demers C.E. (1998). Tension-tension axial fatigue of E-glasse fibre-reinforced polymeric composites : fatigue life diagram, Construction and Building Materials, vol. 12, p. 303-310.

Fawaz Z et Ellyin F. (1994). Fatigue failure model for fibre-reinforced materials under general loading conditions, Journal of Composite Materials, vol. 28(15), p. 1432-1451.

Germain N., Besson J., Feyel F. et Maire J.F. (2005). Méthodes de calcul non local appliquées au calcul de structures composites, Compiègne JNC14, vol. 2, p. 633-640.

Hashin, Z. et Rotem, A. (1973). A fatigue criterion for fibre reinforced composite materials, Journal of Composite Material, vol. 7, p.448-464.

Joo J.W. (1992). A failure Criterion for laminates governed by free edge interlaminar shear stress, Journal of Composite Materials, vol. 26(10), p. 1510-1522.

Kelkar A.D., Tate J.S. et Bolick R. (2006). Structural integrity of aerospace textile composites under fatigue loading, Material Science and Engineering B, vol. 132, p. 79-84.

Kim R.Y., and Soni S.R. (1984). Experimental and Analytical Studies on the onset of delamination in laminated composites, Journal of Composites Materials, vol. 18, p. 71-80.

Lorriot Th., Marion G., Harry H., et Wargnier H. (2003). Onset of free-edge delamination in composite laminates under tensile loading, Composites:Part B, vol. 34, p. 459-471.

Nicoletto G. et Riva E. (2004). Failure mechanisms in twill-weave laminates: FEM predictions vs. experiment, Composites: Part A, vol. 35, p. 787-795.

Nimdum P. (2009). Dimensionnement en fatigue des structure ferroviaire en composites épais, PhD thèse, Ecole des Mines de Paris.

Pandita S. D., Huvsmans G., Wevers M., et Verpoest I. (2001). Tensile fatigue behaviour of glass plain-weave fabric composites in on- and off-axis directions, Composites: Part A, vol. 32, p. 1533-1539.

Philippidis T.P. et Vassilopoulos A.P. (1999). Fatigue of composite laminates under off-axis loading, International Journal of Fatigue, vol. 21, p. 253-262.

Talreja R. (2003). Fatigue of polymer matrix composites. Comprehensive Composite Materials, Chapter 2.14, p. 529-552.

Thionnet A. et Renard J. (1994). Laminated composites under fatigue loading : a dammage development law for transverse cracking, Composite Science Technology, vol. 52, p. 173-181.

Thionnet A. et Renard J. (1997). Modelling of the fatigue behaviour of laminated composite structures, In : Degallaix, S., Bathias, C. et Fougères, R. (eds.). International Conference on fatigue of composites. Proceedings, 3-5 June, Paris, Frace. La Société Française de Métallurgie et de Matériaux, pp. 363-369.