Elaboration of starch based cushion foam by reactive extrusion. Optimization of the process-structure-property relations

Elaboration of starch based cushion foam by reactive extrusion. Optimization of the process-structure-property relations

Georges Abinader Catherine LacosteDamien Erre 

Groupe de Recherche en Sciences pour l’Ingénieur (GRESPI) Département Matériaux, Procédés et Systèmes d’Emballage (MPSE) ESIReims, Université de Reims Champagne-Ardenne (URCA) 3 esplanade Roland Garros, F-51100 Reims, France

Corresponding Author Email: 
Catherine.lacoste@univ-reims.fr
Page: 
383-400
|
DOI: 
https://doi.org/10.3166/RCMA.26.383-400
Received: 
N/A
| |
Accepted: 
N/A
| | Citation
Abstract: 

Foam cushions used in packaging are very light and bulky and a lot of efforts have been made to limit their production and to replace them with materials that are from renewable resources but with comparable mechanical properties to the current petroleum plastic foams. Consequently, the aim of this paper, which consists on developing starch-based foam cushions by reactive extrusion, is to study the relationship between formulation, process, structure and properties. One of the research goals was to understand and optimize the manufacturing process of starch-based foam sheets to ensure the stability and the repeatability of the process. In this study, we determined the perfect « process / material » combination by studying the effects of the various ingredients of the formulation on the mechanical and structural properties of the resulting foams.

Keywords: 

starch foams, formulation, reactive extrusion, cushion

Extended abstract
1. Introduction
2. Matériels et méthodes
3. Résultats et discussions
4. Conclusion
Remerciements

Les auteurs remercient le service technique de l’ESIReims pour l’aide apportée dans les différentes analyses. Les auteurs expriment leur reconnaissance envers les sociétés Chamtor, A.R.D et Celabor pour leur avoir fourni gracieusement les matières premières. Cette étude a été partiellement financée par le programme européen INTERREG IV et par l’ESIReims.

  References

AFNOR (2012). NF EN ISO 7214, Plastiques alvéolaires - Polyéthylène - Méthodes d’essai.

Agripack (2016). Particules de calage 100 % NATURELLES http://www.agripack.fr/menu.html.

Alavi S. H., Gogoi B. K., Khan M., Bowman B. J. and Rizvi S. S. H. (1999). Structural properties of protein-stabilized starch-based supercritical fluid extrudates. Food Research International, vol. 32, p. 107–118.

Alavi S. H., Rizvi S. S. H. and Harriott P. (2003). Process dynamics of starch-based microcellular foams produced by supercritical fluid extrusion. I: model development. Food Research International, vol. 36, p. 309–319.

Bhatnagar S. and Hanna M. A. (1995). Properties of extruded starch-based plastic foam. Industrial Crops and Products, vol. 4, p. 71–77.

Chinnaswamy R. and Hanna M. A., (1987). Nozzle Dimension Effects on the Expansion of Extrusion Cooked Corn Starch. Journal of Food Science, vol. 52, no. 6, p. 1746–1747.

Cho K. Y. and Rizvi S. S. H. (2009). 3D microstructure of supercritical fluid extrudates I: Melt rheology and microstructure formation. Food Research International, vol. 42, p. 595–602.

Della Valle G., Vergnes B., Colonna P. and Patria A. (1997). Relations between rheological properties of molten starches and their expansion behaviour in extrusion. Journal of Food Engineering, vol. 31, p. 277–295.

Ecovative (2016). Myco Foam. http://www.ecovativedesign.com/myco-foam.

Frost, Sullivan (2004). Frost & Sullivan Award Underscores Novamont’s Profile as Product Innovator. http://www.frost.com/prod/servlet/press-release.pag?docid=10896428.

Goel S. K. and Beckman E. J. (1995). Nucleation and growth in microcellular materials: Supercritical CO2 as foaming agent. AIChE Journal, vol. 41, no. 2, p. 357–367.

Ingredion (2015). Welcome to a world of innovation. http://www.nationalstarch.com/Pages/home1.aspx.

Jeong H. and Toledo R. (2004). Twin-screw extrusion at low temperature with carbon dioxide injection to assist expansion: extrudate characteristics. Journal of Food Engineering, vol. 63, p. 425–432.

KTM Industries (2016). Green Cell Foam. http://www.greencellfoam.com.

Landreau E. (2008) Matériaux issus de ressources renouvelables. Mélanges amidon plastifié/PA11 compatibilisés. Thèse de doctorat, Université de Reims Champagne-Ardenne, Reims.

Lee S. Y., Eskridge K. M., Koh W. Y. and Hanna M. A. (2009). Evaluation of ingredient effects on extruded starch-based foams using a supersaturated split-plot design. Industrial Crops and Products, vol. 29, p. 427–436.

Lin Y., Huff H. E., Parsons M. H., Iannotti E., and Hsieh F. (1995). Mechanical properties of extruded high amylose starch for loose-fill packaging material. LWT - Food Science and Technology, vol. 28, p. 163–168.

Martin O. (2001). Etude de la coextrusion de systèmes biodégradable à base d’amidon de blé plastifié. Thèse de doctorat, Université de Reims Champagne-Ardenne, Reims.

Muljana H., Picchioni F., Heeres H. J. and Janssen L. P. B. M. (2009). Supercritical carbon dioxide (scCO2) induced gelatinization of potato starch. Carbohydrate Polymers, vol. 78, p. 511–519.

Novamont (2016). http://www.novamont.com/eng/mater-bi.

Planetoscope (2016). Planetoscope - Statistiques : Production mondiale de plastique, http://www.planetoscope.com/petrole/989-production-mondiale-de-plastique.html

Propack (2014). Bio-Fill - Biodegradable Void Fill. http://www.propakindustries.com.au.

Robin F., Engmann J., Pineau N., Chanvrier H., Bovet N. and Valle G. D. (2010). Extrusion, structure and mechanical properties of complex starchy foams. Journal of Food Engineering, vol. 98, p. 19–27.

Stanojlovic-Davidovic A. (2006). Matériaux biodégradables à base d’amidon expansé renforcé de fibres naturelles ; application à l’emballage alimentaire. Thèse de doctorat, Univeristé du Sud Toulon-Var, Alès.

Tara A. (2005). Modification chimique de l’amidon par extrusion réactive. Université de Reims Champagne-Ardenne, Reims.