Effect of a solvent-free acetylation on wettability and thermal stability of lignocellulosic fibers

Effect of a solvent-free acetylation on wettability and thermal stability of lignocellulosic fibers

Meriem El BoustaniFrançois Brouillette Gilbert Lebrun Ahmed Belfkira 

Laboratoire de Chimie Bioorganique et Macromoléculaire (LCBM) Université Caddi Ayyad, Faculté des Sciences et Techniques Av. Abdelkarim Elkhattabi, B.P 549 Marrakech, Maroc

Centre de Recherche sur les Matériaux Lignocellulosiques (CRML) Université du Québec à Trois-Rivières P.O. Box 500, Trois-Rivières, QC G9A 5H7 Canada

Laboratoire de Mécanique et Eco-matériaux (LMEM) Université du Québec à Trois-Rivières P.O. Box 500, Trois-Rivières, QC G9A 5H7 Canada

Corresponding Author Email: 
Meriem.El.Boustani@uqtr.ca
Page: 
331-347
|
DOI: 
https://doi.org/10.3166/RCMA.26.331-347
Received: 
N/A
| |
Accepted: 
N/A
| | Citation
Abstract: 

Acetylation is one of the most widespread chemical treatments to improve the affinity of lignocellulosic fibers with polymeric matrices for the elaboration of several types of composites. In this study, the acetylation of flax and wood pulp (bleached softwood kraft pulp and thermomechanical pulp) fibers was carried out in conditions that respect the environment and are suitable for industrial use. The thermal stability of acetylated fibers was evaluated. The evolution of the hydrophobic/hydrophilic character of fibers was determined by contact angle measurements. The wettability of fibers by liquid epoxy resin was also evaluated to confirm the improvement of the affinity of acetylated fibers with the epoxy matrix. It was found that the hydrophilic character of fibers decreases with increasing reaction time, whereas the trend was less pronounced beyond specific reaction times. Acetylated fibers can therefore be potential candidates for replacing non-biodegradable reinforcing materials in composite applications. 

Keywords: 

lignocellulosic fibers, chemical treatment, compatibilization, wettability, thermal stability.

Extended abstract
1. Introduction
2. Matériaux et procédures expérimentales
3. Résultats et discussion
4. Conclusion
Remerciements

Les auteurs tiennent à remercier le Conseil de Recherche en Sciences Naturelles et en Génie du Canada (CRSNG) pour son appui financier.

  References

Adebajo M. O., Frost R. L. (2004). Infrared and 13C MAS nuclear magnetic resonance spectroscopic study of acetylation of cotton. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 60, n° 1-2, p. 449-453.

Baiardo M., Zini E., Scandola T. G. (2004). Flax fiber-polyester composites. Composite Part A: Applied Science and Manufacturing, vol. 35, n° 6, p. 703-710.

Baley C., Busnel F., Grohens Y., Sire O. (2006). Influence of chemical treatments on surface properties and adhesion of flax fibre–polyester resin. Composites Part A: Applied Science and Manufacturing, vol. 37, n° 10, p. 1626–1637.

Bledzki, A. K., Mamun, A. A., Lucka-Gabor, M., Gutowski, V. S. (2008). The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters, vol. 2, n° 6, p. 413-422.

Bodirlau R., Teaca C. A. (2009). Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydrides. Romanian Reports of Physics, vol. 54, n° 1-2, p. 93-104.

Brebu M., Vasile, C. (2010). Thermal degradation of lignin–A review. Cellulose Chemistry and Technology, vol. 44, n° 9, p. 353-363.

Bridgwater A. V. (1994). Thermogravimetric analysis of the components of biomass. Advances in Thermochemical Biomass Conversion, Volume 1. Interlaken, Springer, p. 771-783.

El Boustani M., Brouillette F., Lebrun G., Belfkira A. (2015). Solvent-free acetylation of lignocellulosic fibers at room temperature: Effect on fiber structure and surface properties. Journal of Applied Polymer Science, vol. 132, n° 29.

Furqan A., Heung Soap C., MyungKyun P. (2015). A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromolecular Materials Engineering, vol. 300, n° 1, p. 10–24.

Hans J. M., Bergmann E., Gras R. (2003). Topographie et épaisseur des couches minces. Traité des matériaux tome 4 : Analyse et technologie des surfaces : couches minces et tribologie. Lausanne, Presses Polytéchniques et universitaire romandes, p. 7-20.

Heinze T., Liebert T., Koschella, A. (2006). Esterification of polysaccharides, Springer, Heidelberg.

Hill C. A. S., Jones D., Strickland G., Cetin N. S. (1998). Kinetic and mechanistic aspects of the acetylation of wood with acetic anhydride. Holzforschung, vol. 52, n° 6, p. 623-629.

Ismail, H., Hamid Abdullah, A., Abu Bakar, A. (2011). Influence of Acetylation on the Tensile Properties, Water Absorption, and Thermal Stability of (High-Density

Polyethylene)/(Soya Powder)/(Kenaf Core) Composites. Journal of Vinyl & Additive Technology, vol. 17, n° 2, p. 132-137.

Kalia S., Kaith B. S., Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polymer Engineering And Science, vol. 49, n° 7, p. 1253-1272.

Khalil H. P. S. A., Rozman H. D., Ahmad M. N., Ismail, H. (2000). Acetylated plant-fiberreinforced polyester composites: A study of mechanical, hygrothermal, and aging characteristics. Polymer-Plastics Technology and Engineering, vol. 39, n° 4, p. 757-781.

Khalil H. P. S. A., Issam, A. M., Ahmad Shakri, M. T., Suriani, R., Awang, A. Y. (2007). Conventional agro-composites from chemically modified fibres. Industrial Crops and Products, vol. 26, n° 3, p. 315-323.

Li J., Zhang L. P., Peng F., Bian J., Yuan T. Q., Xu F., Sun, R. C. (2009). Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules, vol. 14, n° 9, p. 3551-3566.

Olaru N., Olaru L., Vasile C., Ander, P. (2011). Surface modified cellulose obtained by acetylation without solvents of bleached and unbleached Kraft pulps. Polimery, vol. 56, n° 11-12, p. 834-840.

Owen, N. L., Thomas, D. W. (1989). Infrared studies of "Hard" and "Soft" woods. Applied Spectroscopy, vol. 43, n° 3, p. 451-455.

Pandey, K. K. (1999). A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science, vol. 71, n° 12, p. 1969–1975.

Rabouin-Milot F., Lebrun G., Brouillette F. (2013). Wettability evaluation of acetylated flax and Kraft fibers using the Drop Shape Method. 19th International Conference on Composite Materials ICCM 2013, Montreal.

Rana A. K., Basak R. K., Mitra B. C., Lawther M., Banerjee, A. N. (1994). Studies of acetylation of jute using simplified procedure and its characterization. Journal of Applied Polymer Science, vol. 64, n° 8, p. 1517-1523.

Rebouillat S., Letellier B., Steffenino, B. (1999). Wettability of single fibres-beyond the contact angle approach. International Journal of Adhesion and Adhesives, vol. 19, n° 3, p. 303–314.

Silverstein R.M. (1998). Identification spectrométrique de Composés organiques, De Boeck, Paris.

Sun R. C., Sun X. F., Sun J. X., Zhu, Q. K. (2004). Effect of tertiary amine catalysts on the acetylation of wheat straw for the production of oil sorption-active materials. Comptes Rendus Chimie, vol. 7, n° 2, p. 125–134.

Sun X. F., Sun R., Sun J. X. (2002). Acetylation of rice straw with or without catalysts and its characterization as a natural sorbent in oil spill cleanup. Journal of Agricultural and Food Chemistry, vol. 50, n° 22, p. 6428-6433.

Tripathy S. S., Di Landro L., Fontanelli D., Marchetti A., Levita G. (2000). Mechanical properties of jute fibers and interface strength with an epoxy resin, Journal of Applied Polymer Science, vol. 75, n° 13, p. 1585-1596.

Tserki V., Zafeiropoulos N. E., Simon F., Panayiotou, C. (2005). A study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites Part A: Applied Science and Manufacturing, vol. 36, n° 8, p. 1110-1118.

Zafeiropoulos, N.E., Williams, D.R., Baillie, C.A., Matthews, F.L. (2002). Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Composites Part A: Applied Science and Manufacturing, vol. 33, n° 8, p. 1083-1093.