OPEN ACCESS
Heat transfer theory for concrete tower of cable-stayed bridge will be the basis of the temperature field analysis using the finite element method analysis of the stress field of indirect coupling, accurate analysis of the internal structure of the transient temperature and stress field stacked Jiahousuota stress distribution. In real bridge, for example, solving the temperature stress on the tower, and demonstrated: Solving transient temperature field finite element method can accurately simulate the temperature distribution in Sarasota; the treatment temperature change methods - mechanical coupling problem, can temperature load and other effective combination of load stress field, resulting in accurate stress distribution in the structure.
Temperature, Mechanical properties, Thermo-mechanical coupling, Cable-stayed bridge.
This Work was supported by the research fund for the fund of national engineering and research center for mountainous highways (no. gsgzj-2014-03) and the doctoral program of Ludong university (no. ly2015021), the nature science foundation of Shandong province (no. zr2012eem010), and the state key laboratory of water resources and hydropower engineering science in Wuhan University (no. 2012b104).
1. Sang-Hoon Kim, Jung-Ju Lee and Il-Bum Kwon, Monitoring of Beam Deflection Subjected to Bending Load Using Brillouin Distributed Optical Fiber Sensors, Proceedings of SPIE-The International Society for Optical Engineering, 2001: 63-69. DOI: 10.1117/12.435543.
2. Chai J., Wei S. M., Chang X. T., Liu J. X., Monitoring Deformation and Damage on Rock Structures with Distributed Fiber Optical Sensing [J], International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 1-6. DOI: 10.1016/j.ijrmms.2004.03.057.
3. Ou Jinping, Hou Shuang, Seismic Damage Identification Using Multi-line Distributed Fiber Optic Sensor System, Proceedings of SPIE, 2005: 1003-1008. DOI: 10.1117/12.612449.
4. Roger G. Duncan, Brooks A. Childers, Dawn K. Gifford, Don E. Pettit, Andrew W. Hickson, Timothy L. Brown, Distributed Sensing Technique for Test Article Damage Detection and Monitoring, Proceedings of SPIE [C], 2003: 367-375.
5. S. L. Soo, Boundary Layer Motion of a Gas-Solid Suspension, Proc. Symp. Interaction between Fluids and Particles, vol. 1, pp. 50-63, 1962.
6. W. B. Thompson, Kinetic Theory of Plasma, in M. N. Rosenbluth (ed.), Advanced Plasma Theory, chap. 1, Academic Press, New York, 1964. DOI: 10.1016/B978-0-08-011180-3.50011-4.
7. F. Bakhtiari-Nejad, A. Khorram, M. Rezaeian. Analytical Estimation of Natural Frequencies and Mode Shapes of a Beam Having Two Cracks, International Journal of Mechanical Sciences, 2014:193–202. DOI: 10.1016/j.ijmecsci.2013.10.007.
8. Zhe Cheng, Niaoqing Hun, XiaofeiZhang, Crack Level Estimation Approach for Planetary Gearbox Based on Simulation Signal and GRA, Journal of Sound and Vibration, 2012: 5853–5863. DOI: 10.1016/j.jsv.2012.07.035.
9. Mohammad H. F. Dado, Omar A. Shpli, Crack Parameter Estimation in Structures Using Finite Element Modeling, International Journal of Solids and Structures, 2003: 5389–5406. DOI: 10.1016/S0020-7683(03)00286-5.
10. Ahmed A. Elshafey, Nabil Dawood, H. Marzouk, M. Haddara, Crack Width in Concrete Using Artificial Neural Networks, Engineering Structures, 2013:676–686. DOI: 10.1016/j.engstruct.2013.03.020.
11. Masayuki Kamaya, Estimation of Elastic-Plastic Fracture Toughness by Numerical Simulation Based on a Stress-Based Criterion for Ductile Crack Initiation, International Journal of Pressure Vessels and Piping, 2013: 1-7. DOI: 10.1016/j.ijpvp.2013.10.003.
12. Martin Noel, Khaled Soudki, Estimation of the Crack Width and Deformation of FRP-Reinforced Concrete Flexural Members with and without Transverse Shear Reinforcement, Engineering Structures 2014: 393–398. DOI: 10.1016/j.engstruct.2013.11.005.
13. Minhhuy Le, Jinyi Lee, Jongwoo Jun, Jungmin Kim, Estimation of Sizes of Cracks on Pipes in Nuclear Power Plants Using Dipole Moment and Finite Element Methods, NDT&E International, 2013: 56–63. DOI: 10.1016/j.ndteint.2013.04.008.
14. Gang Li, Shuanhai He, Yongfeng Ju, Kai Du, Long-Distance Precision Inspection Method for Bridge Cracks with Image Processing, Automation in Construction, 2013. DOI: 10.1016/j.autcon.2013.10.021.
15. Ahmed A. Elshafey, Nabil Dawood, H. Marzouk, M. Haddara, Predicting Of Crack Spacing for Concrete by Using Neural Networks, Engineering Failure Analysis, 2013, 31:344–359. DOI: 10.1016/j.engfailanal.2013.02.011.
16. J. H. Espina-Herna´ndez, E.Ramrez-Pacheco. Rapid Estimation of Artificial Near-Side Crack Dimensions in Aluminium Using a GMR-Based Eddy Current Sensor, NDT&E International, 2012, 51: 94–100. DOI: 10.1016/j.ndteint.2012.06.009.
17. M. Hadj Meliani, Z. Azari, G. Pluvinage, Yu G. Matvienko, The Effective T-Stress Estimation and Crack Paths Emanating from U-Notches, Engineering Fracture Mechanics, 2010. 77:1682–1692. DOI: 10.1016/j.engfracmech.2010.03.010.
18. Ahmed A. Elshafey, Nabil Dawood, Crack Width in Concrete Using Artificial Neural Networks, Engineering Structures, 2013, 52: 676–686. DOI: 10.1016/j.engstruct.2013.03.020.
19. Ahmed A. Elshafey, Nabil Dawood, Predicting of Crack Spacing for Concrete by Using Neural Networks. Engineering Failure Analysis, 2013, 31: 344–359. DOI: 10.1016/j.engfailanal.2013.02.011.
20. K.G. Papakonstantinou, M. Shinozuka, Probabilistic Model for Steel Corrosion in Reinforced Concrete Structures of Large Dimensions Considering Crack Effects, Engineering Structures, 2013, 57:306–326.
21. Martin Noël, Khaled Soudki, Estimation of the Crack Width and Deformation of Frp-reinforced Concrete Flexural Members with and without Transverse Shear Reinforcement, Engineering Structures, 2014, 59:393–398. DOI: 10.1016/j.engstruct.2013.11.005.