Load shifting potential of electric vehicles using management systems for increasing renewable energy share in smart grids

Load shifting potential of electric vehicles using management systems for increasing renewable energy share in smart grids

Maria Schaffer Fynn Christian Bollhöfer Johannes Üpping

Institute for Energy Research (iFE), OWL University of Applied Sciences and Arts, Campusallee, Lemgo, Germany

Page: 
101-113
|
DOI: 
https://doi.org/10.2495/EQ-V7-N2-101-113
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

© 2022 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

OPEN ACCESS

Abstract: 

A decarbonisation of the energy system is necessary to reduce greenhouse gas emissions and thus achieve the climate protection goals. For this reason, the renewable energy share in the power grids of many countries is increasing. In order to stabilize the energy system and increase its flexibility, energy management systems are needed. This paper offers a model of energy management system which starts from the network operator and ends at the consumer (an electric vehicle). Firstly, a controllable local system signal, which is sent through a smart meter gateway from the grid operator to the consumer, has been developed. The signal is based on the renewable energy share in the local grid, on the electricity exchange price and on a defined profile. Then, different charging modes, which regulate the energy consumption based on the signal, have been developed and field tested. Finally, the charging modes have been simulated in order to better compare the data. The results show that with smart charging, 90% of the energy demand can be rescheduled. In view of the load shifting, greenhouse gas emissions and energy costs can be reduced.

Keywords: 

electric vehicles, energy management systems, load shifting, renewable energy, smart grids.

  References

[1] United National Framework Convention on Climate Change, Adoption of the Paris Agreement, Draft Decision -/CP.21, FCCC/CP/2015/L.9/Rev.1, 2015.

[2] Edenhofer, O., et al., Climate Change 2014: Mitigation of Climate Change, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Cambridge University Press: Cambridge and New York, 2014.

[3] Rogelj, J., et al., Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development, Global Warming of 1.5°C, an IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, eds. V. Masson-Delmotte, et al., in Press, 2018.

[4] The Danish Government, The Danish Climate Policy Plan: towards a low carbon society, 2013.

[5] Ministry of Economic Affairs and Finance, Royal Decree 661/2007, Boletín Nacional del Estado (BOE), Spanish national gazette, 2007.

[6] Ministry of Economic Development, FER1 Decree, Official Gazette of the Italian Republic, 2019.

[7] Ministry of Ecological and Solidarity Transition, Decree on Multiannual Energy Plan (PPE), French Republic, 2019.

[8] Federal Ministry of Economy and Energy, Renewable Energy Act, EEG 2009, Federal Law Gazette, part I, vol. 49, Bonn, October 2008.

[9] Paatero, J. V. & Lund, P. D., Effects of large-scale photovoltaic power integration on electricity distribution networks. Renewable Energy, 3(2), pp. 216–234, 2007. https://doi.org/10.1016/j.renene.2006.01.005

[10] Holttinen, H., Wind integration: experience, issues, and challenges. Wiley Interdisciplinary Reviews: Energy and Environment, 1(3), pp. 243–255, 2012. https://doi.org/10.1002/wene.18

[11] DENA, Planning of the grid integration of wind energy in Germany onshore and offshore up to the year 2020, German Energy Agency, February 2005.

[12] Paulus, M. & Borggrefe, F., The potential of demand-side management in energy intensive industries for electricity markets in Germany. Applied Energy, 88(2), pp. 432–411, 2011. https://doi.org/10.1016/j.apenergy.2010.03.017

[13] Lund Peter, D., Lindgren, J., Mikkola, J. & Salpakari, J., Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renewable and Sustainable Energy Reviews, 45, pp. 785–807, 2015. https://doi.org/10.1016/j.rser.2015.01.057

[14] Gellings, C. W. & Smith, W. M., Integrating demand-side management into utility planning. Proceedings of the IEEE, 77(6), pp. 908–918, 1989. https://ieeexplore.ieee.org/document/29331

[15] Strbac, G., Demand side management: Benefits and challenges. Energy Policy, 36(12), pp. 4419–4426, 2008. https://doi.org/10.1016/j.enpol.2008.09.030

[16] Kobus, C. B. A., Klaassen, E. A. M., Mugge, R. & Schoormans, J. P. L., A reallife assessment on the effect of smart appliances for shifting households’ electricity demand. Applied Energy, 147, pp. 335–343, 2015. https://doi.org/10.1016/j.apenergy.2015.01.073

[17] López, M. A., de la Torre, S., Martín, S. & Aguado, J. A., Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support. International Journal of Electrical Power & Energy Systems, 64, pp. 689–698, 2015. https://doi.org/10.1016/j.ijepes.2014.07.065

[18] Udrene, L. & Bazbauers, G., Role of vehicle-to-grid systems for electric load shifting and integration of intermittent sources in Latvian power system. Energy Procedia, 72, pp. 156–162, 2015. https://doi.org/10.1016/j.egypro.2015.06.022

[19] Orsi, F., Muratori, M., Rocco, M., Colombo, E. & Rizzoni, G., A multi-dimensional well-to wheels analysis of passenger vehicles in different regions: primary energy consumption, CO2 emissions, and economic cost. Applied Energy, 169, pp. 197–209, 2016. https://doi.org/10.1016/j.apenergy.2016.02.039

[20] Freire, R., Delgado, J., Santos, J. M. & de Almeida, A. T., Integration of renewable energy generation with EV charging strategies to optimize grid load balancing. 13thInternational IEEE Conference on Intelligent Transportation Systems, pp. 392–396, 2010. https://ieeexplore.ieee.org/document/5625071

[21] Xu, S., Feng, D., Yan, Z., Zhang, L., Li, N., Jing, L. & Wang, J., Ant-based swarm algorithm for charging coordination of electric vehicles. International Journal of Distributed Sensor Networks, 9(5), 268942, 2013. https://doi.org/10.1155/2013/268942

[22] Zhang, W., Zhang, D., Mu, B., Wang, L.Y., Bao, Y., Jiang, J. & Morais, H., Decentralized electric vehicle charging strategies for reduced load variation and guaranteed charge completion in regional distribution grids. Energies, 10(2), pp. 147, 2017. https://doi.org/10.3390/en10020147

[23] Yoon, S. G. & Kang, S. G. Economic microgrid planning algorithm with electric vehicle charging demands. Energies, 10(10), pp. 1487, 2015. https://doi.org/10.3390/en10101487

[24] Schuller, A., Flath, C. M. & Gottwalt, S., Quantifying load flexibility of electric vehicles for renewable energy integration. Applied Energy, 151, pp. 335–344, 2015. https://doi.org/10.1016/j.apenergy.2015.04.004

[25] Lopes, J. P., Almeida, P. M. R., Silva, A. M. & Soares, F. J., Smart charging strategies for electric vehicles: enhancing grid performance and maximizing the use of variable renewable energy resources. EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, 2009. http://repositorio.inesctec.pt/handle/123456789/3091

[26] Vadium, I. T., Das, R., Wang, Y., Putrus, G. & Kotter, R., Electric vehicle carbon footprint reduction via intelligent charging strategies. 8th International Conference on Modern Power Systems (MPS), pp. 1–6, 2019. https://doi.org/10.1109/mps.2019.8759783

[27] Geschäftsstelle der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) am Umweltbundesamt, Erneuerbare Energien in Deutschland Daten zur Entwicklung im Jahr 2018, Umweltbundesamt, Dessau-Roßlau, 2019.

[28] OpenWeatherMap, https://openweathermap.org/. Accessed on: 15 April 2020.

[29] Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Energieatlas Nordrhein-Westfalen, LANUV NRW, 2018.

[30] Bundesnetzagentur Marktstammdatenregister. https://www.marktstammdatenregister.de-/MaStR/

[31] SMARD Strommarktdaten. https://www.smard.de/home

[32] European Energy Exchange AG (EEX). https://www.eex.com/en/

[33] RheinEnergie. https://www.rheinenergie.com/de/

[34] Bundesministerium der Justiz und für Verbraucherschutz, Gesetz über die Elektrizitätsund Gasversorgung (Energiewirtschaftsgesetz - EnWG) § 14a Steuerbare Verbrauchseinrichtungen in Niederspannung; Verordnungsermächtigung, Bundesamt für Justiz, Bonn, 2005.

[35] Westfalen Weser Netz. https://ww-netz.com/

[36] Ensslen, A., Ringler, P., Dörr, L., Jochem, P., Zimmermann, F. & Fichtner, W., Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity market. Energy Research & Social Science, 42, pp. 112–126, 2018. https://doi.org/10.1016/j.erss.2018.02.013