© 2021 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).
OPEN ACCESS
In the coming years, the number of electric vehicles (EVs) is going to increase, while the charging network might not be adequately expanded at the required time. It is very likely that there will be feedback effects within the power grid in form of capacity bottlenecks. This might result in reduced charging power for a higher number of electric vehicles in order to counteract fluctuations. In this paper, the authors describe a management system for electric vehicles that optimizes the allocation of charging processes on motorways. The designed system aims to optimize travel and charging times while reducing waiting times for electric vehicles in intercity transport. by considering respective charging capacities, it may be able to reduce feedback effects with the energy system. The management system uses data from the charging stations, electric vehicles and their planned route. This allows the system to forward relevant information regarding expected energy demand to the power grid. consequently, vehicles periodically communicate their position, battery level and their remaining way to destination to the management system, which returns charging advice for the optimal charging station. by using an optimization algorithm, the scarce resource of the charging stations is efficiently allocated to the vehicles. In order to examine its efficiency, a model of the management system with reduced features is transferred into a simulation. The simulation study follows an academic approach and takes different penetration rates of electric vehicles into account. A heuristic approach led to a solution with reasonable complexity, i.e. polynomial running time. In comparison, an analytical solution was outlined which describes the optimal case. This simulation study shows that the proposed system manages the waiting times efficiently by smartly assigning the vehicles to the corresponding charging stations.
allocation, charging stations, electric vehicles, management system, motorway
[1] European commission. communication from the commission of the European Parlia- ment, the council, the European Economic and Social committee and the committee of the regions: Sustainable and Smart Mobility Strategy – putting European transport on track for the future [cOM/2020/789 final]. https://eur-lex.europa.eu/legal-content/ EN/TXT/?uri=cELEX:52020Dc0789; Accessed on: 09.03.2021
[2] European commission. Amended proposal for a regulation of the European Parlia- ment and of the council on establishing the framework for achieving climate neutrality and amending regulation (Eu) 2018/1999 (European climate law) [cOM/2020/563 final]. https://ec.europa.eu/clima/sites/default/files/eu-climate-action/docs/prop_reg_ ecl_en.pdf; Stand: 03.03.2021
[3] Verband der Automobilindustrie. Europa braucht balance zwischen klimaschutz und Wettbewerbsfähigkeit. https://www.vda.de/de/presse/Pressemeldungen/20200304- europa-braucht-balance-zwischen-klimaschutz-und-wettbewerbsfaehigkeit.html; Accessed on: 03.03.2021
[4] Bundesregierung. Ziele der Bundesregierung: bis 2030 die Treibhausgase halbieren. https://www.bundesregierung.de/breg-de/themen/klimaschutz/klimaziele-und-sek- toren-1669268; Accessed on: 03.03.2021
[5] Bundesregierung. Mehr E-Mobilität (03.03.2021). https:\\www.bundesregierung.de/ breg-de/themen/klimaschutz/verkehr-1672896; Accessed on: 03.03.2021
[6] Dörr, N., Dorrmann, L., klebsch, W. & Oleniczak, A., logistik, Energie und Mobilität 2030: Metastudie im bMWi Technologieprogramm IkT für Elektromobilität, Berlin. https://www.vde.com/resource/blob/2013758/3e6f90ce5a2bf8baee20f0056bc4f3b9/ studie-logistik-mobilitaet-und-energie-2030-data.pdf; Stand: 21.03.2021
[7] Bundesregierung. Masterplan ladeinfrastruktur: Mehr ladestationen für Elektroau- tos. https://www.bundesregierung.de/breg-de/themen/klimaschutz/ladeinfrakstruktur- 1692644; Accessed on: 09.03.2021
[8] Statista. Elektromobilität - Anzahl der reinen Elektro-Pkw und Plug-in hybride in Deutschland bis 2022 | Statista. https://de.statista.com/statistik/daten/studie/1076854/ umfrage/bestand-an-bev-und-phev-in-deutschland/; Accessed on: 19.04.2021
[9] DKE Deutsche kommission Elektrotechnik Elektronik Informationstechnik in DIN und VDE. Der Technische leitfaden ladeinfrastruktur Elektromobilität. https://www.dke. de/resource/blob/988408/ca81c83d2549a5e89a4f63bbd29e80c6/technischer-leitfaden- ladeinfrastruktur-elektromobilitaet---version-3-1-data.pdf; Accessed on: 03.03.2021
[10] Anderson, J.E., Bergfeld, M., Chlond, B., Friedrich, H.E., Hoffmann, N., Lenz, B., Kleiner, F., Klötzke, M., Kuhnimhof, T., SCHMID, S., Soylu, T., Steck, F. & Wei, C., lADEN2020 Schlussbericht: konzept zum Aufbau einer bedarfsgerechten ladeinfra- struktur in Deutschland von heute bis 2020. https://elib.dlr.de/111054/ Accessed on: 19.04.2021
[11] Anderson, J.E., Steck, F. & kuhnimhof, T., can renewable energy sources meet elec- tric vehicle charging demand today and in the future? A microscopic time-specific travel demand analysis for germany, Transportation research board 97th Annual Meeting, 2018.
[12] Luca de Tena, D., large scale renewable power integration with electric vehicles [Stutt- gart, universität Stuttgart, Diss., 2014]. Stuttgart: universitätsbibliothek der universität Stuttgart, 2014.
[13] Cassandras, C.G. & Geng, Y., Optimal dynamic allocation and space reservation for electric vehicles at charging stations. IFAC Proceedings Volumes, 47(3), pp. 4056–4061, 2014. https://doi.org/10.3182/20140824-6-zA-1003.01041
[14] Cameron, P.J., Combinatorics: Topics, Techniques, Algorithms, 1st ed., cambridge: university Press: cambridge, pp. 22–24, 1994.
[15] Eclipse SuMO - Simulation of urban MObility. Eclipse SuMO - Simulation of urban MObility. https//www.eclipse.org/sumo/; Accessed on: 19.04.2021
[16] TracI - SuMO Documentation. https//sumo.dlr.de/docs/TracI.html; Accessed on: 19.04.2021
[17] Kurczveil, T., lóPez, P.A. & Schnieder, E., Implementation of an energy model and a charging infrastructure in SuMO. Simulation of Urban Mobility, eds. M. Behrisch, D. Krajzewicz & M. Weber, lecture Notes in computer Science, Springer, pp. 33–43, 2014.
[18] Ruppe, S. & Wesemeyer, D., Simulation einer elektrifizierten busflotte mit SuMO: MENDEl: Minimale belastung elektrischer Netze durch ladevorgänge von Elektro- bussen, ITS Word Congress, 2017. https://core.ac.uk/reader/220158797 Accessed on: 19.04.2021
[19] Markowski, R., Aufbau einer mikroskopischen Verkehrsflusssimulation in SuMO mit einer echtzeitfähigen Datenanbindung an ein lSA-Steuergerät [Studienarbeit]. Tech- nische universität Dresden, 2016.
[20] Krajzewicz, D., behrisch, M., Wagner, P., et al., Second generation of pollutant emis- sion models for SuMO. Modeling Mobility with Open Data: 2nd SUMO Conference, eds. M. Behrisch & M. Weber, Berlin, Germany, May 15-16, 2014, Springer Interna- tional Publishing: cham, pp. 203–221, 2015.
[21] Bottazzi, M., Touko Tcheumadjeu, L.C., Trumpold, J., Erdmann, J. & Oertel, R., LiSuM: Design and Development of a Middleware to couple Virtual LISA+ TLS Controller and SUMO Simulation, SUMO User Conference 2017, Berlin, May 8–10th, 2017.