Selection of Nature-Based Solutions to Improve Comfort in Schools During Heat Waves

Selection of Nature-Based Solutions to Improve Comfort in Schools During Heat Waves

Guadalupe Gómez Borja Frutos Carmen Alonso Fernando Martín-Consuegra Ignacio Oteiza Fernando de Frutos Marta M. Castellote Jesús Muñoz Salustiano Torre Jose Fermoso Teba Torres Miguel A. Antón Teresa Batista Nuno Morais

IETcc-CSIC (Instituto Eduardo Torroja de Ciencias de la Construcción-CSIC), Spain

RJB-CSIC (Real Jardín Botánico-CSIC), Spain

Centro Tecnológico CARTIF, Spain

Área de Desarrollo Rural y Sostenibilidad. Diputación de Badajoz (DIPBA), Spain

CIMAC (Comunidade Intermunicipal de Alentejo Central), Portugal

Câmara Municipal do Porto, Portugal

| |
| | Citation



Climate change impacts particularly affect vulnerable populations such as children. Therefore, addressing the adaptation of educational buildings is crucial in avoiding these negative effects on school performance. In this paper, three educational buildings, located in Badajoz (Spain), Evora (Portugal) and Porto (Portugal), serve as pilot samples to study the suitability of nature-based solutions (NBS), chosen for each one of three climatic zones. The NBS selected include green roofs, vertical structures with vegetation to shade holes, outdoor trees and free-cooling ventilation. The scenarios of the different NBS implemented in the three models were simulated with the software EnergyPlus, which allows optimising the appropriate decision before renovation operations begin. The results obtained from the simulations suggest energy performance improvements after applying the most adequate NBS selection to each one of the three buildings tested. Particularly, a reduction in radiation on both roofs and facades is required in the case of Evora and Badajoz, where both climate zones have similar features, that is, warm and dry. While in Porto, milder and more humid than the former ones, it is very effective to operate mainly on the roof, complemented by small ventilation operations.


climate educational buildings, energy efficiency, heatwaves, indoor environmental quality, nature-based solutions


[1] IPCC. AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerability [Internet]. Stockholm, Sweden; 2014 [cited 2020 Feb 21]. Available from: report/ar5/wg2/

[2] Fermoso, J., Torres, T., Antón, M.A., Peña, A., Muñoz, J., Torre, S., et al., Improvement of classroom conditions and CO2 concentrations through natural ventilation measures reinforced with NBS implementation. 2nd Euro-Mediterranean Conference for Environmental Integration, Tunisia, Paper Number 596, Springer, Oct. 2019.

[3] Gallego, J., Arranz, B., Oteiza, A. & Martín-Consuegra, F., Hygrothermal comfort and air quality assessment in public schools in Madrid. Study of three cases during a year. Submitted for publication.

[4] Calliari, E., Staccione, A. & Mysiak, J., An assessment framework for climate-proof nature-based solutions. Science of the Total Environment, 656, pp. 691–700, 2019.

[5] Panno, A., Carrus, G., Lafortezza, R., Mariani, L. & Sanesi, G., Nature-based solu- tions to promote human resilience and wellbeing in cities during increasingly hot summers. Environmental Research, 159, pp. 249–256, 2017. envres.2017.08.016

[6] Xing, Y., Jones, P. & Donnison, I., Characterisation of nature-based solutions for the built environment. Sustainability, 9(1), 149, 2017.

[7] Stabile, L., Massimo, A., Canale, L., Russi, A., Andrade, A. & Dell’Isola, M., The effect of ventilation strategies on indoor air quality and energy consumptions in classrooms. Buildings, 9(5), p. 110, 2019.

[8] Almeida, R.M.S.F., Pinto, M., Pinho, P.G. & de Lemos, L.T., Natural ventilation and indoor air quality in educational buildings: Experimental assessment and improvement strategies. Energy Efficiency, 10(4), pp. 839–854, 2017. cle/10.1007/s12053-016-9485-0

[9] McIvor, A.E., Hewett, M.J., Borges, D.S., Clements, W.S., Domanski, P.A., Evans R.A., et al., ANSI/ASHRAE Standard 62-2001,Ventilation for Acceptable Indoor Air Quality, 2001.

[10] RITE. Reglamento instalaciones térmicas en los edificios [Internet], 2013. [cited 2017 May 22]. Available from getica/RITE/Paginas/InstalacionesTermicas.aspx

[11] Dovjak, M., Slobodnik, J. & Krainer, A., Consequences of energy renovation on indoor air quality in kindergartens. Building Simulation, 13(3), pp. 691–708, 2020. https://doi. org/10.1007/s12273-020-0613-6

[12] Korsavi, S.S., Montazami, A. & Mumovic, D. Indoor air quality (IAQ) in naturally- ventilated primary schools in the UK: Occupant-related factors. Building and Environ- ment, 180, p. 106992, 2020.

[13] Carratt, A., Kokogiannakis, G. & Daly, D., A critical review of methods for the perfor- mance evaluation of passive thermal retrofits in residential buildings. Journal of Cleaner Production, 263, p. 121408, 2020.

[14] Código Técnico de la Edificación. Documento Básico HS Salubridad, Ministerio de Fomento Secretaría de Estado de Infraestructuras, Transporte y Vivienda Secretaría General de Vivienda Dirección General de Arquitectura, Vivienda y Suelo (testimony of CTE DB HS) 2019. DBHS.pdf

[15] Sailor, D.J., A green roof model for building energy simulation programs. Energy and Buildings, 40(8), pp. 1466–1478, 2008.

[16] Marvuglia, A., Koppelaar, R. & Rugani, B., The effect of green roofs on the reduction of mortality due to heatwaves: Results from the application of a spatial microsimulation model to four European cities. Ecological Modelling, 438, p. 109351, 2020. https://doi. org/10.1016/j.ecolmodel.2020.109351

[17] Teotónio, I., Cabral, M., Cruz, C.O. & Silva, C.M., Decision support system for green roofs investments in residential buildings. Journal of Cleaner Production, 249, p. 1193665, 2020.

[18] Morakinyo, T.E., Lai, A., Lau, K.K.L. & Ng, E., Thermal benefits of vertical greening in a high-density city: Case study of Hong Kong. Urban Forestry & Urban Greening, 37, pp. 42–55, 2019.

[19] Larsen, S.F., Filippín, C. & Lesino, G., Modelling double skin green facades with tra- ditional thermal simulation software. Solar Energy, 121, pp. 56–67, 2015. https://doi. org/10.1016/j.solener.2015.08.033

[20] Gómez, G., Frutos, B., Alonso, C., Martín-Consuegra, F., Oteiza, I., Castellote, M.M., et al., Prediction of thermal comfort and energy behaviour through nature-based solu- tions implementation. Case study in Badajoz (Spain). WIT Transactions on The Built Environment, Eco-Architecture VIII: Harmonisation between Architecture and Nature, WIT Press, vol. 195, pp. 17–27, 2020.

[21] Hoelscher, M.-T., Nehls, T., Jänicke, B. & Wessolek, G., Quantifying cooling effects of facade greening: Shading, transpiration and insulation. Energy and Buildings, 114, pp. 283–290, 2016.

[22] Palme, M., Privitera, R. & La Rosa, D., The shading effects of green infrastruc-      ture in private residential areas: Building Performance Simulation to support urban planning. Energy and Buildings, 229, p. 110531, 2020. enbuild.2020.110531

[23] Hsieh, C.-M., Li, J.-J., Zhang, L. & Schwegler, B., Effects of tree shading and transpi- ration on building cooling energy use. Energy and Buildings, 159, pp. 382–397, 2018.

[24] de Gobierno, Presidencia, Spain, Real Decreto 2429/1979, de 6 de julio, por el que se aprueba la norma básica de edificación NBE-CT-79, sobre condiciones térmicas en los edificios. Boletín Oficial del Estado, vol. 253, pp. 24524–24550. 1979

[25] Ministério das Obras Públicas, Transportes e Comunicações. Portugal. Decreto-Lei n.º 40/1990. Regulamento das Características de Comportamento Térmico dos Edifícios.

[26] Givoni, B., Man, Climate & Architecture, 2nd edition, Applied Science Publishers: London, 483 pp., 1976.

[27] de España, C.D.M., Real Decreto 485/1997, sobre disposiciones mínimas en materia de señalización de seguridad y salud en el trabajo; anexos I, II y III [Internet]. April 1997. Available from